Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster

Naigui Liu Delu Gao Dunyou Wang

Naigui Liu, Delu Gao, Dunyou Wang. Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211168
Citation: Naigui Liu, Delu Gao, Dunyou Wang. Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211168

doi: 10.1063/1674-0068/cjcp2211168

Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Structures of the reactants. (a) H2, (b) Cu19 cluster, and (c) defective graphene-supported Cu19 cluster. The indicated units of the bond lengths are in angstroms.

    Figure  2.  Potential energy versus time for the molecular-level dissociative adsorption of H2: (a) at a bridge-hollow site on the Cu19 cluster, (b) at a hollow-hollow site on the graphene-supported Cu19 cluster.

    Figure  3.  The structures of final adsorption states at bridge-hollow sites and bridge-bridge sites of the dissociative adsorption of H2 on the Cu19 cluster. The indicated units of the bond lengths are in angstroms.

    Figure  4.  Structures of final adsorption states at hollow–hollow sites and bridge–hollow sites of the dissociative adsorption of H2 on the graphene-supported Cu19 cluster. The indicated units of the bond lengths are in angstroms.

    Figure  5.  The pDOS of the d-orbitals for Cu19 and Cu19/G. The blue dashed line represents the location of d-band center, and the red solid line indicates the location of Fermi level Ef.

    Figure  6.  (a) The relationship between ICOHP value and adsorption energy for every adsorption state on both Cu19 and Cu19/G. (b) The relationship between the charge (Δe) transferred from Cu atoms to the two H atoms and adsorption energy for every adsorption state on Cu19 and Cu19/G.

    Table  I.   The H2 dissociative adsorption energy $E_{\mathrm{a}\mathrm{d}}$ of every adsorption state (Ad. state) on Cu19 and Cu19/G.

    Cu19 Cu19/G
    Ad. state Ead/eV Ad. state Ead/eV
    BH1 −0.74 BH1/G −1.00
    BH2 −0.58 BH2/G −1.06
    BH3 −0.63 HH1/G −0.92
    BH4 −0.49 HH2/G −0.98
    BH5 −0.48 HH3/G −1.20
    BH6 −0.64 HH4/G −1.27
    BB1 −0.48
    BB2 −0.62
    下载: 导出CSV
  • [1] B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Int. J. Hydrogen Energy 32, 1121 (2007). doi: 10.1016/j.ijhydene.2006.11.022
    [2] R. S. Dhayal, W. E. van Zyl, and C. W. Liu, Dalton Trans. 48, 3531 (2019). doi: 10.1039/C8DT04639E
    [3] S. Sakong and A. Groß, Surf. Sci. 525, 107 (2003). doi: 10.1016/S0039-6028(02)02550-5
    [4] S. Amaya-Roncancio, C. Toncón-Leal, I. Arellano-Ramírez, D. A. Torres-Cerón, E. Restrepo-Parra, and K. Sapag, Chem. Phys. 559, 111546 (2022). doi: 10.1016/j.chemphys.2022.111546
    [5] L. Álvarez-Falcón, F. Viñes, A. Notario-Estévez, and F. Illas, Surf. Sci. 646, 221 (2016). doi: 10.1016/j.susc.2015.08.005
    [6] E. W. Smeets, G. Füchsel, and G. J. Kroes, J. Phys. Chem. C 123, 23049 (2019). doi: 10.1021/acs.jpcc.9b06539
    [7] G. H. Guvelioglue, P. Ma, X. He, R. C. Forrey, and H. Cheng, Phys. Rev. B 73, 155436 (2006). doi: 10.1103/PhysRevB.73.155436
    [8] F. Göltl, C. Houriez, M. Guitou, G. Chambaud, and P. Sautet, J. Phys. Chem. C 118, 5374 (2014). doi: 10.1021/jp4118634
    [9] E. C. Tyo and S. Vajda, Nat. Nanotech. 10, 577 (2015). doi: 10.1038/nnano.2015.140
    [10] Z. Luo, A. W. Castleman Jr., and S. N. Khanna, Chem. Rev. 116, 14456 (2016). doi: 10.1021/acs.chemrev.6b00230
    [11] M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, and D. Ma, ACS Cent. Sci. 7, 262 (2020).
    [12] L. Triguero, U. Wahlgren, P. Boussard, and P. Siegbahn, Chem. Phys. Lett. 237, 550 (1995). doi: 10.1016/0009-2614(95)00353-6
    [13] X. J. Kuang, X. Q. Wang and G. B. Liu, Transit. Met. Chem. 35, 841 (2010). doi: 10.1007/s11243-010-9402-x
    [14] G. H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H. Cheng, Phys. Rev. Lett. 94, 026103 (2005). doi: 10.1103/PhysRevLett.94.026103
    [15] L. Ma, M. Melander, T. Weckman, S. Lipasti, K. Laasonen, and J. Akola, J. Mol. Graphics Model. 65, 61 (2016). doi: 10.1016/j.jmgm.2016.02.007
    [16] F. Montejo-Alvaro, J. Oliva, A. Zarate, M. Herrera-Trejo, H. Hdz-García, and A. Mtz-Enriquez, Phys. E 110, 52 (2019). doi: 10.1016/j.physe.2019.02.005
    [17] Y. Yang, A. C. Reber, S. E. Gilliland III, C. E. Castano, B. F. Gupton, and S. N. Khanna, J. Phys. Chem. C 122, 25396 (2018). doi: 10.1021/acs.jpcc.8b07538
    [18] F. Meng, M. Peng, Y. Chen, X. Cai, F. Huang, L. Yang, X. Liu, T. Li, X. Wen, N. Wang, D. Xiao, H. Jiang, L. Xia, H. Liu, and D. Ma, Appl. Catal. B: Environ. 301, 120826 (2022). doi: 10.1016/j.apcatb.2021.120826
    [19] R. Shi, J. Zhao, S. Liu, W. Sun, H. Li, P. Hao, Z. Li, and J. Ren, Carbon 130, 185 (2018). doi: 10.1016/j.carbon.2018.01.011
    [20] D. H. Lim, J. H. Jo, D. Y. Shin, J. Wilcox, H. C. Ham, and S. W. Nam, Nanoscale 6, 5087 (2014). doi: 10.1039/C3NR06539A
    [21] T. Abdollahi and D. Farmanzadeh, J. Alloys Compd. 735, 117 (2018). doi: 10.1016/j.jallcom.2017.11.051
    [22] S. Darby, T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts, J. Chem. Phys. 116, 1536 (2002). doi: 10.1063/1.1429658
    [23] M. Yang, K. A. Jackson, C. Koehler, T. Frauenheim, and J. Jellinek, J. Chem. Phys. 124, 024308 (2006). doi: 10.1063/1.2150439
    [24] M. Kabir, A. Mookerjee, and A. K. Bhattacharya, Phys. Rev. A 69, 043203 (2004). doi: 10.1103/PhysRevA.69.043203
    [25] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    [26] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    [27] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [28] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    [29] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [30] W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009). doi: 10.1088/0953-8984/21/8/084204
    [31] B. Hammer and J. K. Nørskov, Adv. Catal. 45, 71 (2000). doi: 10.1016/S0360-0564(02)45013-4
    [32] R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993). doi: 10.1021/j100135a014
    [33] R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, J. Comupt. Chem. 41, 1931 (2020). doi: 10.1002/jcc.26353
    [34] S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016). doi: 10.1002/jcc.24300
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  163
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-02-02

目录

    /

    返回文章
    返回