Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon

Xiu-dong Jia Jian-hong Bian Bo Jin Rui Sun Bin Huo Xiao-ling Guan Chen-fei Guo Caixia Yuan Yan-bo Wu

Xiu-dong Jia, Jian-hong Bian, Bo Jin, Rui Sun, Bin Huo, Xiao-ling Guan, Chen-fei Guo, Caixia Yuan, Yan-bo Wu. Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211163
Citation: Xiu-dong Jia, Jian-hong Bian, Bo Jin, Rui Sun, Bin Huo, Xiao-ling Guan, Chen-fei Guo, Caixia Yuan, Yan-bo Wu. Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211163

doi: 10.1063/1674-0068/cjcp2211163

Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  CCSD(T)/aug-cc-pVTZ-optimized structures of NLi3E+ (E = N, P, As) (1a3a) with necessary bond lengths (in Å) regarding symmetry. The Wiberg bond orders calculated at the B3LYP/aug-cc-pVTZ level for N–E interactions are given in italic red font.

    Figure  2.  Valence canonical molecular orbitals (A) and AdNDP bonding patterns (B) with occupation numbers (ONs) of N2Li3+ (1a).

    Figure  3.  Comparison of HOMO–LUMO gaps (Gap) between NLi3E+ [E = N (1a), P (2a), As (3s)] and CLi3E [E = N (1a'), P (2a'), As (3a')] species at the B2PLYP-D3(BJ)/aug-cc-pVTZ level.

    Figure  4.  Structures and relative energies (∆E, in kcal/mol) of 1a3a and their low-energy isomers at the CCSD(T)/aug-cc-pVTZ level.

    Figure  5.  RMSD plots for the BOMD simulations of NLi3E+ and CLi3E (E = N, P, As) (1a3a and 1a′3a′) at 4, 298 and 500 K.

  • [1] R. Hoffmann, R. W. Alder, and C. F. Wilcox, J. Am. Chem. Soc. 92, 4992 (1970). doi: 10.1021/ja00719a044
    [2] J. H. van’t Hoff, Arch. Neerl. Sci. Exactes Nat. 9, 445 (1874).
    [3] J. A. Le Bel, Bull. Soc. Chim. Fr. 22, 337 (1874).
    [4] R. Hoffmann, Pure. Appl. Chem. 28, 181 (1971). doi: 10.1351/pac197128020181
    [5] K. Sorger and P. v. R. Schleyer, J. Mol. Struc.: THEOCHEM 338, 317 (1995). doi: 10.1016/0166-1280(95)04233-V
    [6] L. Radom and D. R. Rasmussen, Pure Appl. Chem. 70, 1977 (1998). doi: 10.1351/pac199870101977
    [7] D. Rottger and G. Erker, Angew. Chem. Int. Ed. Engl. 36, 812 (1997). doi: 10.1002/anie.199708121
    [8] W. Siebert and A. Gunale, Chem. Soc. Rev. 28, 367 (1999). doi: 10.1039/a801225c
    [9] R. Choukroun and P. Cassoux, Acc. Chem. Res. 32, 494 (1999). doi: 10.1021/ar970304z
    [10] L. S. Wang, A. I. Boldyrev, X. Li, and J. Simons, J. Am. Chem. Soc. 122, 7681 (2000). doi: 10.1021/ja993081b
    [11] J. B. Collins, J. D. Dill, E. D. Jemmis, Y. Apeloig, P. v. R. Schleyer, R. Seeger, and J. A. Pople, J. Am. Chem. Soc. 98, 5419 (1976). doi: 10.1021/ja00434a001
    [12] L. M. Yang, E. Ganz, Z. Chen, Z. X. Wang, and P. v. R. Schleyer, Angew. Chem. Int. Ed. 54, 9468 (2015). doi: 10.1002/anie.201410407
    [13] V. Vassilev-Galindo, S. Pan, K. J. Donald, and G. Merino, Nat. Rev. Chem. 2, 0114 (2018). doi: 10.1038/s41570-018-0114
    [14] P. Liu, J. H. Bian, Q. Wang, F. Huang, D. Li, and Y. B. Wu, Phys. Chem. Chem. Phys. 20, 12642 (2018). doi: 10.1039/C8CP01193A
    [15] X. F. Zhao, J. H. Bian, F. Huang, C. Yuan, Q. Wang, P. Liu, D. Li, X. Wang, and Y. B. Wu, RSC Adv. 8, 36521 (2018). doi: 10.1039/C8RA07664B
    [16] S. Pan, J. L. Cabellos, M. Orozco-Ic, P. K. Chattaraj, L. Zhao, and G. Merino, Phys. Chem. Chem. Phys. 20, 12350 (2018). doi: 10.1039/C8CP01009A
    [17] J. C. Guo, L. Y. Feng, C. Dong, and H. J. Zhai, J. Phys. Chem. A 122, 8370 (2018). doi: 10.1021/acs.jpca.8b08573
    [18] J. C. Guo, L. Y. Feng, J. Barroso, G. Merino, and H. J. Zhai, Chem. Commun. 56, 8305 (2020). doi: 10.1039/D0CC02973D
    [19] M. H. Wang, X. Dong, Y. H. Ding, and Z. H. Cui, Chem. Commun. 56, 7285 (2020). doi: 10.1039/D0CC02236E
    [20] R. Sun, X. F. Zhao, B. Jin, B. Huo, J. H. Bian, X. L. Guan, C. Yuan, and Y. B. Wu, Phys. Chem. Chem. Phys. 22, 17062 (2020). doi: 10.1039/D0CP01106A
    [21] J. H. Bian, B. Jin, X. F. Zhao, R. Sun, C. Yuan, C. Y. Zhou, and Y. B. Wu, RSC Adv. 11, 15841 (2021). doi: 10.1039/D1RA02178H
    [22] B. Jin, R. Sun, B. Huo, C. Yuan, and Y. B. Wu, Chem. Commun. 57, 13716 (2021). doi: 10.1039/D1CC05844D
    [23] R. Sun, B. Jin, B. Huo, C. Yuan, H. J. Zhai, and Y. B. Wu, Chem. Commun. 58, 2552 (2022). doi: 10.1039/D1CC07313C
    [24] B. Jin and Z. R. Wang, Phys. Chem. Chem. Phys. 24, 17956 (2022). doi: 10.1039/D2CP01496C
    [25] Z. H. Cui, C. B. Shao, S. M. Gao, and Y H. Ding, Phys. Chem. Chem. Phys. 12, 13637 (2010). doi: 10.1039/c0cp00296h
    [26] Z. H. Cui, Y. H. Ding, J. L. Cabellos, E. Osorio, R. Islas, A. Restrepo, and G. Merino, Phys. Chem. Chem. Phys. 17, 8769 (2015). doi: 10.1039/C4CP05707D
    [27] J. Y. Guo, H. Y. Chai, Q. Duan, J. M. Qin, X. D. Shen, D. Y. Jiang, J. H. Hou, B. Yan, Z. R. Li, F. L. Gu, and Q. S. Li, Phys. Chem. Chem. Phys. 18, 4589 (2016). doi: 10.1039/C5CP06081H
    [28] Y. B. Wu, H. G. Lu, S. D. Li, and Z. X. Wang, J. Phys. Chem. A 113, 3395 (2009). doi: 10.1021/jp8099187
    [29] Y. B. Wu, Z. X. Li, X. H. Pu, and Z. X. Wang, J. Phys. Chem. C 115, 13187 (2011). doi: 10.1021/jp202200p
    [30] Y. B. Wu, Z. X. Li, X. H. Pu, and Z. X. Wang, Comput. Theor. Chem. 992, 78 (2012). doi: 10.1016/j.comptc.2012.05.008
    [31] M. H. Wang, M. Orozco-Ic, L. Leyva-Parra, W. Tiznado, J. Barroso, Y. H. Ding, Z. H. Cui, and G. Merino, J. Phys. Chem. A 125, 3009 (2021). doi: 10.1021/acs.jpca.1c02002
    [32] Z. H. Cui and Y. H. Ding, Phys. Chem. Chem. Phys. 13, 5960 (2011). doi: 10.1039/c0cp02475a
    [33] A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988). doi: 10.1021/cr00088a005
    [34] D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008). doi: 10.1039/b804083d
    [35] M. Saunders, J. Comput. Chem. 25, 621 (2004). doi: 10.1002/jcc.10407
    [36] P. P. Bera, K. W. Sattelmeyer, M. Saunders, H. F. Schaefer, and P. v. R. Schleyer, J. Phys. Chem. A 110, 4287 (2006). doi: 10.1021/jp057107z
    [37] T. D. Kühne, M. Iannuzzi, M. Del Ben, M. V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, J. Chem. Phys. 152, 194103 (2020). doi: 10.1063/5.0007045
    [38] H. G. Lu and Y. B. Wu, in GXYZ 2.0, A Random Search Program, Taiyuan: Shanxi University, (2015).
    [39] The AdNDP program was downloaded freely at http:// ion.chem.usu.edu/~boldyrev/adndp.php.
    [40] H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. Mcnicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, MolPro, a package of ab initio programs, version 2012.1, (2012).
    [41] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr, J. E. P. Montgomery, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, vision B. 01, Wallingford CT: Gaussian Inc., (2016).
    [42] P. Pyykkö, J. Phys. Chem. A 119, 2326 (2015). doi: 10.1021/jp5065819
  • suppl_data.zip
  • 加载中
图(5)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  132
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-04

目录

    /

    返回文章
    返回