-
Abstract: Plasmonic catalysis, which is driven by the localized surface plasmon resonance of metal nanoparticles, has become an emerging field in heterogeneous catalysis. The microscopic mechanism of this kind of reaction, however, remains controversial partly because of the inaccuracy of temperature measurement and the ambiguity of reagent adsorption state. In order to investigate the kinetics of plasmonic catalysis, an online mass spectrometer-based apparatus has been built in our laboratory, with emphases on dealing with temperature measurement and adsorption state identification issues. Given the temperature inhomogeneity in the catalyst bed, three thermocouples are installed compared with the conventional design with only one. Such a multiple-point temperature measuring technique enables the quantitative calculation of equivalent temperature and thermal reaction contribution of the catalysts. Temperature-programmed desorption is incorporated into the apparatus, which helps to identify the adsorption state of reagents. The capabilities of the improved apparatus have been demonstrated by studying the kinetics of a model plasmon-induced catalytic reaction, i.e., H2+D2→HD over Au/TiO2. Dissociative adsorption of molecular hydrogen at Au/TiO2 interface and non-thermal contribution to HD production have been confirmed.
-
Figure 5. Characterization of Au NPs/TiO2 catalysts. (a) The size distribution of Au NPs deposited on the TiO2 surface. (b) TEM of Au NPs/TiO2 catalysts, showing the distribution of 1wt % Au NPs (dark particles) over TiO2 support (gray particles). (c) Normalized diffuse reflectance UV-Vis spectra of TiO2, the as-synthesized, and activated Au NPs/TiO2 catalysts.
Figure 7. (a) Temperature (Tc) dependence of HD production over Au NPs/TiO2 and TiO2 without light illumination. (b) Temperature at different locations in the reactor as a function of the temperature of heating source Tc. Inset shows the dependence of the difference of Tb and Tu on Tc. (c) Linear fitting of the logarithmic representation of thermal reaction rate versus equivalent temperature yields the apparent activation energy Ea and prefactor A.
Figure 8. (a) Comparative HD production over TiO2 and Au NPs/TiO2 around room temperature with and without laser exposure (5.5 W/cm2). (b) HD production, H2 and D2 consumption over Au NPs/TiO2 around room temperature as a function of laser on (5.5 W/cm2) or off. (c) HD production over Au NPs/TiO2 at Tc of 373 K as a function of incident laser intensity.
Table I. Temperature at different locations in the reactor (Tc, Tb and Tu) and calculation of the equivalent temperature and apparent activation energy of thermally catalyzed H2+D2
$ \to $ HD by Au/TiO2.Tc/K Tb/K Tu/K Ea1/(kJ/mol) Te1/K Ea2/(kJ/mol) Te2/K Ea3/(kJ/mol) 328 326 313 53.0±5.3 320 44.8±4.1 320 44.8±4.1 362 359 333 346 346 396 392 353 373 373 430 424 373 399 399 469 461 393 427 427 503 493 413 453 453 -
[1] S. Galvagno and G. Parravano, J. Catal. 55, 178 (1978). doi: 10.1016/0021-9517(78)90204-X [2] M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989). doi: 10.1016/0021-9517(89)90034-1 [3] M. Haruta, Catal. Today 36, 153 (1997). doi: 10.1016/S0920-5861(96)00208-8 [4] C. Ratnasamy and J. P. Wagner, Catal. Rev. 51, 325 (2009). doi: 10.1080/01614940903048661 [5] W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, Chem. Soc. Rev. 44, 5793 (2015). doi: 10.1039/C4CS00362D [6] U. Aslam, V. G. Rao, S. Chavez, and S. Linic, Nat. Catal. 1, 656 (2018). doi: 10.1038/s41929-018-0138-x [7] P. Christopher, H. Xin, and S. Linic, Nat. Chem. 3, 467 (2011). doi: 10.1038/nchem.1032 [8] M. C. Daniel and D. Astruc, Catal. Rev. 104, 293 (2004). doi: 10.1021/cr030698+ [9] G. V. Hartland, Catal. Rev. 111, 3858 (2011). doi: 10.1021/cr1002547 [10] S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015). doi: 10.1038/nmat4281 [11] C. Boerigter, R. Campana, M. Morabito, and S. Linic, Nat. Commun. 7, 1 (2016). doi: 10.1038/ncomms10545 [12] P. Christopher, H. Xin, A. Marimuthu, and S. Linic, Nat. Mater. 11, 1044 (2012). doi: 10.1038/nmat3454 [13] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 13, 240 (2013). doi: 10.1021/nl303940z [14] L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, Science 362, 69 (2018). doi: 10.1126/science.aat6967 [15] L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149 [16] Y. Sivan, J. Baraban, I. W. Un, and Y. Dubi, Science 364, 9367 (2019). doi: 10.1126/science.aaw9367 [17] Y. Sivan, J. H. Baraban, and Y. Dubi, OSA Continuum 3, 483 (2020). doi: 10.1364/OSAC.376809 [18] Y. Dubi, I. W. Un, and Y. Sivan, Chem. Sci. 11, 5017 (2020). doi: 10.1039/C9SC06480J [19] X. Zhang, X. L. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutierrez Vela, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, Nano Lett. 18, 1714 (2018). doi: 10.1021/acs.nanolett.7b04776 [20] X. Li, X. Zhang, H. O. Everitt, and J. Liu, Nano Lett. 19, 1706 (2019). doi: 10.1021/acs.nanolett.8b04706 [21] R. Cortright and J. Dumesic, Adv. Catal. 46, 161 (2001). doi: 10.1002/chin.200150264 [22] S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, J. Am. Chem. Soc. 136, 64 (2014). doi: 10.1021/ja411017b [23] L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149 [24] J. L. Falconer and J. A. Schwarz, Catal. Rev. Sci. Eng. 25, 141 (1983). doi: 10.1080/01614948308079666 [25] J. Gong and C. B. Mullins, Acc. Chem. Res. 42, 1063 (2009). doi: 10.1021/ar8002706 [26] A. V. Luikov, Analytical Heat Diffusion Theory, 1st Edn., New York: Elsevier-Science Direct, 1 (1968) [27] X. Du, Y. Huang, X. Pan, B. Han, Y. Su, Q. Jiang, M. Li, H. Tang, G. Li, and B. Qiao, Nat. Commun. 11, 1 (2020). doi: 10.1038/s41467-019-13993-7 [28] S. K. Ghosh and T. Pal, Chem. Rev. 107, 4797 (2007). doi: 10.1021/cr0680282 [29] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal. 144, 175 (1993). doi: 10.1006/jcat.1993.1322 [30] M. A. Henderson, W. S. Epling, C. H. Peden, and C. L. Perkins, J. Phys. Chem. B 107, 534 (2003). doi: 10.1021/jp0262113 [31] X. Mao, X. Lang, Z. Wang, Q. Hao, B. Wen, Z. Ren, D. Dai, C. Zhou, L. M. Liu, and X. Yang, J. Phys. Chem. Lett. 4, 3839 (2013). doi: 10.1021/jz402053p [32] R. A. Ojifinni, N. S. Froemming, J. Gong, M. Pan, T. S. Kim, J. White, G. Henkelman, and C. B. Mullins, J. Am. Chem. Soc. 130, 6801 (2008). doi: 10.1021/ja800351j [33] T. Whittaker, K. S. Kumar, C. Peterson, M. N. Pollock, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 140, 16469 (2018). doi: 10.1021/jacs.8b04991 [34] C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, and X. Yang, J. Am. Chem. Soc. 135, 10206 (2013). doi: 10.1021/ja4030963 [35] F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520 [36] A. G. Sault, R. J. Madix, and C. T. Campbell, Surf. Sci. 169, 347 (1986). doi: 10.1016/0039-6028(86)90616-3 [37] K. B. Sravan Kumar, T. N. Whittaker, C. Peterson, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 142, 5760 (2020). doi: 10.1021/jacs.9b13729 -