An Apparatus for Investigating the Kinetics of Plasmonic Catalysis

Wen Zhang Yong Zhou Wei Chen Tianjun Wang Zhaoxian Qin Gao Li Zefeng Ren Xueming Yang Chuanyao Zhou

Wen Zhang, Yong Zhou, Wei Chen, Tianjun Wang, Zhaoxian Qin, Gao Li, Zefeng Ren, Xueming Yang, Chuanyao Zhou. An Apparatus for Investigating the Kinetics of Plasmonic Catalysis†[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211160
Citation: Wen Zhang, Yong Zhou, Wei Chen, Tianjun Wang, Zhaoxian Qin, Gao Li, Zefeng Ren, Xueming Yang, Chuanyao Zhou. An Apparatus for Investigating the Kinetics of Plasmonic Catalysis[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211160

doi: 10.1063/1674-0068/cjcp2211160

An Apparatus for Investigating the Kinetics of Plasmonic Catalysis

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Three-dimensional design of the plasmonic catalysis apparatus.

    Figure  2.  Connection and differential pump between (a) reaction, (b) sampling, and (c) detection systems.

    Figure  3.  (a) Three-dimensional design of the reaction system. (b) Schematic cut view of the reactor.

    Figure  4.  (a) Schematic diagram of laser optical path. (b) Spectrum of the diode laser. The intensity profile of the diode laser without (c) and with (d) expansion by the cylindrical lenses.

    Figure  5.  Characterization of Au NPs/TiO2 catalysts. (a) The size distribution of Au NPs deposited on the TiO2 surface. (b) TEM of Au NPs/TiO2 catalysts, showing the distribution of 1wt % Au NPs (dark particles) over TiO2 support (gray particles). (c) Normalized diffuse reflectance UV-Vis spectra of TiO2, the as-synthesized, and activated Au NPs/TiO2 catalysts.

    Figure  6.  (a) Linearity of the temperature ramp. (b) Representative TPD of masses 2, 3, 4, 18, 19, and 20 from Au/TiO2 exposed to H2 and D2. Comparison of TPD (m/z=18 (c), m/z =19 (d), and m/z =2 (e)) from Au/TiO2, TiO2, and empty reactor.

    Figure  7.  (a) Temperature (Tc) dependence of HD production over Au NPs/TiO2 and TiO2 without light illumination. (b) Temperature at different locations in the reactor as a function of the temperature of heating source Tc. Inset shows the dependence of the difference of Tb and Tu on Tc. (c) Linear fitting of the logarithmic representation of thermal reaction rate versus equivalent temperature yields the apparent activation energy Ea and prefactor A.

    Figure  8.  (a) Comparative HD production over TiO2 and Au NPs/TiO2 around room temperature with and without laser exposure (5.5 W/cm2). (b) HD production, H2 and D2 consumption over Au NPs/TiO2 around room temperature as a function of laser on (5.5 W/cm2) or off. (c) HD production over Au NPs/TiO2 at Tc of 373 K as a function of incident laser intensity.

    Figure  9.  (a) Representative temperature at different locations in the reaction bed as a function of the intensity of the illuminating laser. (b) Reation rate Ra, Rt and Rn and (c) the ratio between non-thermal and thermal reaction rates as a function of light intensity.

    Table  I.   Temperature at different locations in the reactor (Tc, Tb and Tu) and calculation of the equivalent temperature and apparent activation energy of thermally catalyzed H2+D2$ \to $HD by Au/TiO2.

    Tc/KTb/KTu/KEa1/(kJ/mol)Te1/KEa2/(kJ/mol)Te2/KEa3/(kJ/mol)
    32832631353.0±5.332044.8±4.132044.8±4.1
    362359333346346
    396392353373373
    430424373399399
    469461393427427
    503493413453453
    下载: 导出CSV
  • [1] S. Galvagno and G. Parravano, J. Catal. 55, 178 (1978). doi: 10.1016/0021-9517(78)90204-X
    [2] M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989). doi: 10.1016/0021-9517(89)90034-1
    [3] M. Haruta, Catal. Today 36, 153 (1997). doi: 10.1016/S0920-5861(96)00208-8
    [4] C. Ratnasamy and J. P. Wagner, Catal. Rev. 51, 325 (2009). doi: 10.1080/01614940903048661
    [5] W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, Chem. Soc. Rev. 44, 5793 (2015). doi: 10.1039/C4CS00362D
    [6] U. Aslam, V. G. Rao, S. Chavez, and S. Linic, Nat. Catal. 1, 656 (2018). doi: 10.1038/s41929-018-0138-x
    [7] P. Christopher, H. Xin, and S. Linic, Nat. Chem. 3, 467 (2011). doi: 10.1038/nchem.1032
    [8] M. C. Daniel and D. Astruc, Catal. Rev. 104, 293 (2004). doi: 10.1021/cr030698+
    [9] G. V. Hartland, Catal. Rev. 111, 3858 (2011). doi: 10.1021/cr1002547
    [10] S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015). doi: 10.1038/nmat4281
    [11] C. Boerigter, R. Campana, M. Morabito, and S. Linic, Nat. Commun. 7, 1 (2016). doi: 10.1038/ncomms10545
    [12] P. Christopher, H. Xin, A. Marimuthu, and S. Linic, Nat. Mater. 11, 1044 (2012). doi: 10.1038/nmat3454
    [13] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 13, 240 (2013). doi: 10.1021/nl303940z
    [14] L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, Science 362, 69 (2018). doi: 10.1126/science.aat6967
    [15] L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149
    [16] Y. Sivan, J. Baraban, I. W. Un, and Y. Dubi, Science 364, 9367 (2019). doi: 10.1126/science.aaw9367
    [17] Y. Sivan, J. H. Baraban, and Y. Dubi, OSA Continuum 3, 483 (2020). doi: 10.1364/OSAC.376809
    [18] Y. Dubi, I. W. Un, and Y. Sivan, Chem. Sci. 11, 5017 (2020). doi: 10.1039/C9SC06480J
    [19] X. Zhang, X. L. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutierrez Vela, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, Nano Lett. 18, 1714 (2018). doi: 10.1021/acs.nanolett.7b04776
    [20] X. Li, X. Zhang, H. O. Everitt, and J. Liu, Nano Lett. 19, 1706 (2019). doi: 10.1021/acs.nanolett.8b04706
    [21] R. Cortright and J. Dumesic, Adv. Catal. 46, 161 (2001). doi: 10.1002/chin.200150264
    [22] S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, J. Am. Chem. Soc. 136, 64 (2014). doi: 10.1021/ja411017b
    [23] L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149
    [24] J. L. Falconer and J. A. Schwarz, Catal. Rev. Sci. Eng. 25, 141 (1983). doi: 10.1080/01614948308079666
    [25] J. Gong and C. B. Mullins, Acc. Chem. Res. 42, 1063 (2009). doi: 10.1021/ar8002706
    [26] A. V. Luikov, Analytical Heat Diffusion Theory, 1st Edn., New York: Elsevier-Science Direct, 1 (1968)
    [27] X. Du, Y. Huang, X. Pan, B. Han, Y. Su, Q. Jiang, M. Li, H. Tang, G. Li, and B. Qiao, Nat. Commun. 11, 1 (2020). doi: 10.1038/s41467-019-13993-7
    [28] S. K. Ghosh and T. Pal, Chem. Rev. 107, 4797 (2007). doi: 10.1021/cr0680282
    [29] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal. 144, 175 (1993). doi: 10.1006/jcat.1993.1322
    [30] M. A. Henderson, W. S. Epling, C. H. Peden, and C. L. Perkins, J. Phys. Chem. B 107, 534 (2003). doi: 10.1021/jp0262113
    [31] X. Mao, X. Lang, Z. Wang, Q. Hao, B. Wen, Z. Ren, D. Dai, C. Zhou, L. M. Liu, and X. Yang, J. Phys. Chem. Lett. 4, 3839 (2013). doi: 10.1021/jz402053p
    [32] R. A. Ojifinni, N. S. Froemming, J. Gong, M. Pan, T. S. Kim, J. White, G. Henkelman, and C. B. Mullins, J. Am. Chem. Soc. 130, 6801 (2008). doi: 10.1021/ja800351j
    [33] T. Whittaker, K. S. Kumar, C. Peterson, M. N. Pollock, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 140, 16469 (2018). doi: 10.1021/jacs.8b04991
    [34] C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, and X. Yang, J. Am. Chem. Soc. 135, 10206 (2013). doi: 10.1021/ja4030963
    [35] F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520
    [36] A. G. Sault, R. J. Madix, and C. T. Campbell, Surf. Sci. 169, 347 (1986). doi: 10.1016/0039-6028(86)90616-3
    [37] K. B. Sravan Kumar, T. N. Whittaker, C. Peterson, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 142, 5760 (2020). doi: 10.1021/jacs.9b13729
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  190
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 录用日期:  2022-12-09
  • 网络出版日期:  2022-12-13

目录

    /

    返回文章
    返回