Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective

Jian Song WenLong Liang Shouning Yang Huayan Yang

Jian Song, WenLong Liang, Shouning Yang, Huayan Yang. Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210157
Citation: Jian Song, WenLong Liang, Shouning Yang, Huayan Yang. Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210157

doi: 10.1063/1674-0068/cjcp2210157

Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Two series of HBI-type chromophores: 4-hydroxybenzylidene-imidazolinone (HBI) series (top row) and 8-hydroxyquinoline-imidazolinone (HQI) series (bottom row). The invariant parts of structure are colored in black (labeled as frag-2) and variant parts are colored in red (labeled as frag-1) and blue (labeled as frag-3,) respectively. Experimental absorption/emission wavelengths (nm) of their original FPs are provided in parentheses. It is noted that the HQI-3 and HQI-5 chromophores have no corresponding FPs. Experimental references can be found in Supplementary materials (SM).

    Figure  2.  One-photon spectra (OPS) and two-photon absorption (TPA) spectral patterns of all chromophores in both neutral and anionic forms. The reference wavelengths for theory and experiment are the absorption of neutral HBI-1 and absorption of sfGFP respectively. (A), (B), (C), (G) are one-photon absorption (Sabs), one-photon emission (Sem), two-photon absorption (STPA) and two-photon absorption cross section ($ {\mathrm{\sigma }}^{\mathrm{T}\mathrm{P}\mathrm{A}} $) of neutral chromophores in HBI series and HQI series, respectively. (D), (E), (F), (H) show the anionic ones. Numbers of horizontal ordinates represent the X of HBI-X and HQI-X.

    Figure  3.  Interfragment charge transfer (IFCT) of absorption (A, C) and emission (B, D) of neutral HBI and HQI series and corresponding correlations analysis with Sabs (E), Sem (F), STPA (G), and ${\sigma }^{\rm{TPA}}$(H). The Nabs and Nem are the numbers of losing (positive) or gaining (negative) electrons of different fragment in OPS absorption and emission, respectively. Ntotal and Nfrag-3 are the total electron number of molecular ICT and the number of gaining electrons of frag-3, respectively.

    Figure  4.  Interfragment charge transfer (IFCT) of absorption (A, C) and emission (B, D) of anionic HBI and HQI series and corresponding correlations analysis with Sabs (E), Sem (F), STPA (G) and ${\sigma }^{\rm{TPA}}$(H). The Nabs and Nem are the numbers of losing (positive) or gaining (negative) electrons of different fragment in OPS absorption and emission respectively. $ \mathrm{\delta } $ is the bond length alternation of frag-2, Ntotal and Nfrag-2 are the total electron number of molecular ICT and the number of gaining electrons of frag-2 respectively.

    Figure  5.  Comparison of BLA values of frag-2 of different series. (A) Structures of HBI, HQI, 6-hydroxyl-naphthalene-imidazolinone(HNI). Red bonds in frag-2 are carbon-carbon bonds for BLA calculation. (B) BLA values of neutral HBI, HQI, and HNI series. (C) BLA values of anionic HBI, HQI, and HNI series. HNI: 6-hydroxyl-naphthalene-imidazolinone, BLA: the bond length alternation.

    Figure  6.  The predicted HNI series and the comparison with other series in OPS and TPA. (A) Structures of HNI series. (B), (C), (D), (H) are Sabs, Sem, STPA and $ {\mathrm{\sigma }}^{\mathrm{T}\mathrm{P}\mathrm{A}} $ of neutral series respectively. (E), (F), (G), (I) are Sabs, Sem, STPA, and ${\mathrm{\sigma }}^{\mathrm{TPA}}$ of anionic series respectively.

  • [1] E. Cassette, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret, and T. Pons, Adv. Drug Deliv. Rev. 65, 719 (2013). doi: 10.1016/j.addr.2012.08.016
    [2] J. Klohs, A. Wunder, and K. Licha, Basic Res. Cardiol. 103, 144 (2008). doi: 10.1007/s00395-008-0702-7
    [3] K. D. Piatkevich, F. V. Subach, and V. V. Verkhusha, Chem. Soc. Rev. 42, 3441 (2013). doi: 10.1039/c3cs35458j
    [4] C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, Sensors 8, 3082 (2008). doi: 10.3390/s8053082
    [5] R. Sang, X. Xu, Q. Wang, Q. Fan, and W. Huang, Acta Chim. Sin, 78, 901 (2020). doi: 10.6023/A20050190
    [6] C. Ding, Y. Huang, Z. Shen, and X. Chen, Adv. Mater. 33, 2007768 (2021).
    [7] Z. Chang, F. Liu, L. Wang, M. Deng, C. Zhou, Q. Sun, and J. Chu, Chin. Chem. Lett. 30, 1856 (2019). doi: 10.1016/j.cclet.2019.08.034
    [8] Y. Chen, L. Li, W. Chen, H. Chen, and J. Yin, Chin. Chem. Lett. 30, 1353 (2019). doi: 10.1016/j.cclet.2019.02.003
    [9] L. Chen and H. Han, Microchim. Acta 181, 1485 (2014). doi: 10.1007/s00604-014-1204-y
    [10] J. Zhang, H. Ye, Y. Jin, and D. Han, Top. Curr. Chem. 380, 6 (2022).
    [11] F. V. Subach and V. V. Verkhusha, Chem. Rev. 112, 4308 (2012). doi: 10.1021/cr2001965
    [12] R. N. Day and M. W. Davidson, Chem. Soc. Rev. 38, 2887 (2009). doi: 10.1039/b901966a
    [13] S. Pletnev, N. V. Pletneva, E. A. Souslova, D. M. Chudakov, S. Lukyanov, A. Wlodawer, Z. Dauter, and V. Pletnev, Acta Crystallogr. D 68, 1088 (2012). doi: 10.1107/S0907444912020598
    [14] G. M. Olenginski, J. Piacentini, D. R. Harris, N. A. Runko, B. M. Papoutsis, J. R. Alter, K. R. Hess, S. H. Brewer, and C. M. Phillips-Piro, Acta Crystallogr. D 77, 1010 (2021). doi: 10.1107/S2059798321006525
    [15] X. K. Shu, N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, and S. J. Remington, Biochemistry 45, 9639 (2006). doi: 10.1021/bi060773l
    [16] I. V. Yampolsky, S. J. Remington, V. I. Martynov, V. K. Potapov, S. Lukyanov, and K. A. Lukyanov, Biochemistry 44, 5788 (2005). doi: 10.1021/bi0476432
    [17] O. M. Subach, G. H. Patterson, L. M. Ting, Y. Wang, J. S. Condeelis, and V. V. Verkhusha, Nat. Methods 8, 771 (2011). doi: 10.1038/nmeth.1664
    [18] Y. H. Hsu, Y. A. Chen, H. W. Tseng, Z. Y. Zhang, J. Y. Shen, W. T. Chuang, T. C. Lin, C. S. Lee, W. Y. Hung, B. C. Hong, S. H. Liu, and P. T. Chou, J. Am. Chem. Soc. 136, 11805 (2014). doi: 10.1021/ja5062856
    [19] C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M. Duraj-Thatte, B. Azizi, L. M. Tolbert, and K. M. Solntsev, Curr. Opin. Chem. Eng. 27, 64 (2015). doi: 10.1016/j.cbpa.2015.06.002
    [20] M. Pattabiraman and A. Natarajan, Photophysicochemical Processes Directed Within Nano-Containers, Cham: Springer International Publishing, 321 (2020).
    [21] A. Baldridge, A. Amador, and L. M. Tolbert, Langmuir 27, 3271 (2011). doi: 10.1021/la2003244
    [22] S. R. Samanta, J. P. Da Silva, A. Baldridge, L. M. Tolbert, and V. Ramamurthy, Org. Lett. 16, 3304 (2014). doi: 10.1021/ol5013058
    [23] A. Singh, S. Karmakar, I. M. Abraham, D. Rambabu, D. Dave, R. Manjithaya, and T. K. Maji, Inorg. Chem. 59, 8251 (2020). doi: 10.1021/acs.inorgchem.0c00625
    [24] Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, and X. Zhang, J. Am. Chem. Soc. 140, 7381 (2018). doi: 10.1021/jacs.8b02176
    [25] C. H. Wolstenholme, H. Hu, S. Ye, B. E. Funk, D. Jain, C. H. Hsiung, G. Ning, Y. Liu, X. Li, and X. Zhang, J. Am. Chem. Soc. 142, 17515 (2020). doi: 10.1021/jacs.0c07245
    [26] K. H. Jung, M. Fares, L. S. Grainger, C. H. Wolstenholme, A. Hou, Y. Liu, and X. Zhang, Org. Biomol. Chem. 17, 1906 (2019). doi: 10.1039/C8OB01483C
    [27] A. Saady, V. Böttner, M. Meng, E. Varon, Y. Shav-Tal, C. Ducho, and B. Fischer, Eur. J. Med. Chem. 173, 99 (2019). doi: 10.1016/j.ejmech.2019.04.013
    [28] L. Cai, H. Li, X. Yu, L. Wu, X. Wei, T. D. James, and C. Huang, ACS Appl. Bio. Mater. 4, 2128 (2021). doi: 10.1021/acsabm.0c01446
    [29] X. Li, R. Zhao, Y. Wang, and C. Huang, J. Mater. Chem. B 6, 6592 (2018). doi: 10.1039/C8TB01885E
    [30] X. Zhi, B. Shen, and Y. Qian, New J. Chem. 44, 8823 (2020). doi: 10.1039/D0NJ01477J
    [31] Z. Zheng, T. Zhang, H. Liu, Y. Chen, R. T. K. Kwok, C. Ma, P. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, K. S. Wong, and B. Z. Tang, ACS Nano 12, 8145 (2018). doi: 10.1021/acsnano.8b03138
    [32] D. Li, P. Jing, L. Sun, Y. An, X. Shan, X. Lu, D. Zhou, D. Han, D. Shen, Y. Zhai, S. Qu, R. Zboril, and A. L. Rogach, Adv. Mater. 30, 1705913 (2018).
    [33] X. Liu, J. Li, C. Hu, Q. Zhou, W. Zhang, M. Hu, J. Zhou, and J. Wang, Angew. Chem. Int. Ed. 52, 4805 (2013). doi: 10.1002/anie.201301307
    [34] J. Tay, M. A. Parkes, K. Addison, Y. Chan, L. Zhang, H. C. Hailes, P. C. Bulman Page, S. R. Meech, L. Blancafort, and H. H. Fielding, J. Phys. Chem. Lett. 8, 765 (2017). doi: 10.1021/acs.jpclett.7b00174
    [35] A. Nakata, Y. Imamura, and H. Nakai, J. Chem. Phys. 125, 064109 (2006). doi: 10.1063/1.2227379
    [36] A. Nakata, Y. Imamura, T. Otsuka, and H. Nakai, J. Chem. Phys. 124, 94105 (2006). doi: 10.1063/1.2173987
    [37] I. Y. Zhang, J. Wu, and X. Xu, Chem. Commun. 46, 3057 (2010). doi: 10.1039/c000677g
    [38] X. Chen, J. Song, Z. N. Chen, T. Jin, F. Q. Long, H. Xie, Y. S. Zheng, W. Zhuang, and L. Zhang, J. Comput. Chem. 39, 2307 (2018). doi: 10.1002/jcc.25552
    [39] D. Grabarek and T. Andruniów, J. Chem. Theory Comput. 15, 490 (2019). doi: 10.1021/acs.jctc.8b00769
    [40] B. Kang, K. Y. Baek, and J. Y. Lee, Bull Korean Chem. Soc. 36, 276 (2015). doi: 10.1002/bkcs.10063
    [41] D. H. Friese, C. Hättig, and K. Ruud, Phys. Chem. Chem. Phys. 14, 1175 (2012). doi: 10.1039/C1CP23045J
    [42] D. Kánnár and P. G. Szalay, J. Mol. Model. 20, 2503 (2014). doi: 10.1007/s00894-014-2503-2
    [43] M. A. Salem and A. Brown, J. Chem. Theroy Comput. 10, 3260 (2014). doi: 10.1021/ct500028w
    [44] M. Schreiber, M. R. Silva-Junior, S. P. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008). doi: 10.1063/1.2889385
    [45] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. De Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, Wires Comput. Mol. Sci. 4, 269 (2014). doi: 10.1002/wcms.1172
    [46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, CT (2016).
    [47] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [48] T. Lu. Multiwfn Manual, version 3.8(dev), Section 3.21.8, available at http://sobereva.com/multiwfn
    [49] M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, Nat. Methods. 8, 393 (2011). doi: 10.1038/nmeth.1596
    [50] M. Kojima, H. Hayashi, T. Aotake, S. Ikeda, M. Suzuki, N. Aratani, D. Kuzuhara, and H. Yamada, Chem. Asian J. 10, 2337 (2015). doi: 10.1002/asia.201500597
    [51] L. Cao, L. Zhang, Q. Wei, J. S. Zhang, D. J. Chen, S. Wang, S. J. Su, T. Wang, and Z. Y. Ge, Dyes Pigm. 176, 108242 (2020).
    [52] Y. L. Li, Z. P. Li, Y. Wang, A. Compaan, T. H. Ren, and W. J. Dong, Energy Environ. Sci. 6, 2907 (2013). doi: 10.1039/c3ee42001a
    [53] C. Yan, Z. Guo, W. Chi, W. Fu, S. A. A. Abedi, X. Liu, H. Tian, and W. H. Zhu, Nat. Commun. 12, 3869 (2021). doi: 10.1038/s41467-021-24187-5
    [54] L. Xu and Q. Zhang, Sci. China Mater. 60, 1093 (2017). doi: 10.1007/s40843-016-5170-2
    [55] M. Kertesz, C. H. Choi, and S. J. Yang, Chem. Rev. 105, 3448 (2005). doi: 10.1021/cr990357p
    [56] Y. X. Guo, G. H. Lu, J. Z. Zhuo, J. Y. Wang, X. Li, and Z. Q. Zhang, J. Mater. Chem. B 6, 2489 (2018). doi: 10.1039/C8TB00452H
    [57] D. K. Zhang, V. Martin, I. Garcia-Moreno, A. Costela, M. E. Perez-Ojeda, and Y. Xiao, Phys. Chem. Chem. Phys. 13, 13026 (2011). doi: 10.1039/c1cp21038f
    [58] W. Xu, P. Y. Ma, Q. P. Diao, L. B. Xu, X. Liu, Y. Sun, X. H. Wang, and D. Q. Song, Sens. Actuators B Chem. 252, 86 (2017). doi: 10.1016/j.snb.2017.05.137
  • suppl_data.zip
  • 加载中
图(6)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  153
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 录用日期:  2022-12-06
  • 网络出版日期:  2022-12-08

目录

    /

    返回文章
    返回