Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective
-
Abstract: Partial genetically encoded 4-hydroxybenzylidene-imidazolinone (HBI)-type chromophores are new promising fluorescent probes, which are suitable for imaging and detection of living cells. However, the lack of infrared chromophores hinders the development seriously. Here more than 30 HBI-type chromophores with regular structure modifications were employed and typical spectral redshift change laws and mechanisms were investigated by quantum methods. Results show that both one-photon spectrum (OPS, absorption/emission) and two-photon absorption (TPA) can achieve large redshift via either extending conjugated lengths of frag-3 or enlarging conjugated areas of frag-1 of HBI skeleton. Spectral redshifts of all chromophores are highly related to intramolecular charge transfer (ICT), but neutral ones are closely related to the total ICT or electron-accepting-numbers of frag-3, and the high correlative factor of anions is the aromaticity of frag-2 bridge. The frag-2 bridge with high aromaticity can open a reverse charge transfer channel in anion relative to neutral, obtaining significant redshift. Based on analysis, a new 6-hydroxyl-naphthalene-imidazolinone (HNI) series, which have larger conjugated area in frag-1, are predicted. The OPS and TPA of anionic HNI ones acquire about 76−96 nm and 119−146 nm redshift relative to traditional HBI series respectively as a whole. The longest emission of anionic HNI-4 realizes more 244 nm redshift relative to HBI-1. Our work clarifies worthy spectral regularities and redshift mechanisms of HBI-type chromophores and provide valuable design strategy for infrared chromophores synthesis in experiment.
-
Figure 1. Two series of HBI-type chromophores: 4-hydroxybenzylidene-imidazolinone (HBI) series (top row) and 8-hydroxyquinoline-imidazolinone (HQI) series (bottom row). The invariant parts of structure are colored in black (labeled as frag-2) and variant parts are colored in red (labeled as frag-1) and blue (labeled as frag-3,) respectively. Experimental absorption/emission wavelengths (nm) of their original FPs are provided in parentheses. It is noted that the HQI-3 and HQI-5 chromophores have no corresponding FPs. Experimental references can be found in Supplementary materials (SM).
Figure 2. One-photon spectra (OPS) and two-photon absorption (TPA) spectral patterns of all chromophores in both neutral and anionic forms. The reference wavelengths for theory and experiment are the absorption of neutral HBI-1 and absorption of sfGFP respectively. (A), (B), (C), (G) are one-photon absorption (Sabs), one-photon emission (Sem), two-photon absorption (STPA) and two-photon absorption cross section (
$ {\mathrm{\sigma }}^{\mathrm{T}\mathrm{P}\mathrm{A}} $ ) of neutral chromophores in HBI series and HQI series, respectively. (D), (E), (F), (H) show the anionic ones. Numbers of horizontal ordinates represent the X of HBI-X and HQI-X.Figure 3. Interfragment charge transfer (IFCT) of absorption (A, C) and emission (B, D) of neutral HBI and HQI series and corresponding correlations analysis with Sabs (E), Sem (F), STPA (G), and
${\sigma }^{\rm{TPA}}$ (H). The Nabs and Nem are the numbers of losing (positive) or gaining (negative) electrons of different fragment in OPS absorption and emission, respectively. Ntotal and Nfrag-3 are the total electron number of molecular ICT and the number of gaining electrons of frag-3, respectively.Figure 4. Interfragment charge transfer (IFCT) of absorption (A, C) and emission (B, D) of anionic HBI and HQI series and corresponding correlations analysis with Sabs (E), Sem (F), STPA (G) and
${\sigma }^{\rm{TPA}}$ (H). The Nabs and Nem are the numbers of losing (positive) or gaining (negative) electrons of different fragment in OPS absorption and emission respectively.$ \mathrm{\delta } $ is the bond length alternation of frag-2, Ntotal and Nfrag-2 are the total electron number of molecular ICT and the number of gaining electrons of frag-2 respectively.Figure 5. Comparison of BLA values of frag-2 of different series. (A) Structures of HBI, HQI, 6-hydroxyl-naphthalene-imidazolinone(HNI). Red bonds in frag-2 are carbon-carbon bonds for BLA calculation. (B) BLA values of neutral HBI, HQI, and HNI series. (C) BLA values of anionic HBI, HQI, and HNI series. HNI: 6-hydroxyl-naphthalene-imidazolinone, BLA: the bond length alternation.
Figure 6. The predicted HNI series and the comparison with other series in OPS and TPA. (A) Structures of HNI series. (B), (C), (D), (H) are Sabs, Sem, STPA and
$ {\mathrm{\sigma }}^{\mathrm{T}\mathrm{P}\mathrm{A}} $ of neutral series respectively. (E), (F), (G), (I) are Sabs, Sem, STPA, and${\mathrm{\sigma }}^{\mathrm{TPA}}$ of anionic series respectively. -
[1] E. Cassette, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret, and T. Pons, Adv. Drug Deliv. Rev. 65, 719 (2013). doi: 10.1016/j.addr.2012.08.016 [2] J. Klohs, A. Wunder, and K. Licha, Basic Res. Cardiol. 103, 144 (2008). doi: 10.1007/s00395-008-0702-7 [3] K. D. Piatkevich, F. V. Subach, and V. V. Verkhusha, Chem. Soc. Rev. 42, 3441 (2013). doi: 10.1039/c3cs35458j [4] C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, Sensors 8, 3082 (2008). doi: 10.3390/s8053082 [5] R. Sang, X. Xu, Q. Wang, Q. Fan, and W. Huang, Acta Chim. Sin, 78, 901 (2020). doi: 10.6023/A20050190 [6] C. Ding, Y. Huang, Z. Shen, and X. Chen, Adv. Mater. 33, 2007768 (2021). [7] Z. Chang, F. Liu, L. Wang, M. Deng, C. Zhou, Q. Sun, and J. Chu, Chin. Chem. Lett. 30, 1856 (2019). doi: 10.1016/j.cclet.2019.08.034 [8] Y. Chen, L. Li, W. Chen, H. Chen, and J. Yin, Chin. Chem. Lett. 30, 1353 (2019). doi: 10.1016/j.cclet.2019.02.003 [9] L. Chen and H. Han, Microchim. Acta 181, 1485 (2014). doi: 10.1007/s00604-014-1204-y [10] J. Zhang, H. Ye, Y. Jin, and D. Han, Top. Curr. Chem. 380, 6 (2022). [11] F. V. Subach and V. V. Verkhusha, Chem. Rev. 112, 4308 (2012). doi: 10.1021/cr2001965 [12] R. N. Day and M. W. Davidson, Chem. Soc. Rev. 38, 2887 (2009). doi: 10.1039/b901966a [13] S. Pletnev, N. V. Pletneva, E. A. Souslova, D. M. Chudakov, S. Lukyanov, A. Wlodawer, Z. Dauter, and V. Pletnev, Acta Crystallogr. D 68, 1088 (2012). doi: 10.1107/S0907444912020598 [14] G. M. Olenginski, J. Piacentini, D. R. Harris, N. A. Runko, B. M. Papoutsis, J. R. Alter, K. R. Hess, S. H. Brewer, and C. M. Phillips-Piro, Acta Crystallogr. D 77, 1010 (2021). doi: 10.1107/S2059798321006525 [15] X. K. Shu, N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, and S. J. Remington, Biochemistry 45, 9639 (2006). doi: 10.1021/bi060773l [16] I. V. Yampolsky, S. J. Remington, V. I. Martynov, V. K. Potapov, S. Lukyanov, and K. A. Lukyanov, Biochemistry 44, 5788 (2005). doi: 10.1021/bi0476432 [17] O. M. Subach, G. H. Patterson, L. M. Ting, Y. Wang, J. S. Condeelis, and V. V. Verkhusha, Nat. Methods 8, 771 (2011). doi: 10.1038/nmeth.1664 [18] Y. H. Hsu, Y. A. Chen, H. W. Tseng, Z. Y. Zhang, J. Y. Shen, W. T. Chuang, T. C. Lin, C. S. Lee, W. Y. Hung, B. C. Hong, S. H. Liu, and P. T. Chou, J. Am. Chem. Soc. 136, 11805 (2014). doi: 10.1021/ja5062856 [19] C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M. Duraj-Thatte, B. Azizi, L. M. Tolbert, and K. M. Solntsev, Curr. Opin. Chem. Eng. 27, 64 (2015). doi: 10.1016/j.cbpa.2015.06.002 [20] M. Pattabiraman and A. Natarajan, Photophysicochemical Processes Directed Within Nano-Containers, Cham: Springer International Publishing, 321 (2020). [21] A. Baldridge, A. Amador, and L. M. Tolbert, Langmuir 27, 3271 (2011). doi: 10.1021/la2003244 [22] S. R. Samanta, J. P. Da Silva, A. Baldridge, L. M. Tolbert, and V. Ramamurthy, Org. Lett. 16, 3304 (2014). doi: 10.1021/ol5013058 [23] A. Singh, S. Karmakar, I. M. Abraham, D. Rambabu, D. Dave, R. Manjithaya, and T. K. Maji, Inorg. Chem. 59, 8251 (2020). doi: 10.1021/acs.inorgchem.0c00625 [24] Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, and X. Zhang, J. Am. Chem. Soc. 140, 7381 (2018). doi: 10.1021/jacs.8b02176 [25] C. H. Wolstenholme, H. Hu, S. Ye, B. E. Funk, D. Jain, C. H. Hsiung, G. Ning, Y. Liu, X. Li, and X. Zhang, J. Am. Chem. Soc. 142, 17515 (2020). doi: 10.1021/jacs.0c07245 [26] K. H. Jung, M. Fares, L. S. Grainger, C. H. Wolstenholme, A. Hou, Y. Liu, and X. Zhang, Org. Biomol. Chem. 17, 1906 (2019). doi: 10.1039/C8OB01483C [27] A. Saady, V. Böttner, M. Meng, E. Varon, Y. Shav-Tal, C. Ducho, and B. Fischer, Eur. J. Med. Chem. 173, 99 (2019). doi: 10.1016/j.ejmech.2019.04.013 [28] L. Cai, H. Li, X. Yu, L. Wu, X. Wei, T. D. James, and C. Huang, ACS Appl. Bio. Mater. 4, 2128 (2021). doi: 10.1021/acsabm.0c01446 [29] X. Li, R. Zhao, Y. Wang, and C. Huang, J. Mater. Chem. B 6, 6592 (2018). doi: 10.1039/C8TB01885E [30] X. Zhi, B. Shen, and Y. Qian, New J. Chem. 44, 8823 (2020). doi: 10.1039/D0NJ01477J [31] Z. Zheng, T. Zhang, H. Liu, Y. Chen, R. T. K. Kwok, C. Ma, P. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, K. S. Wong, and B. Z. Tang, ACS Nano 12, 8145 (2018). doi: 10.1021/acsnano.8b03138 [32] D. Li, P. Jing, L. Sun, Y. An, X. Shan, X. Lu, D. Zhou, D. Han, D. Shen, Y. Zhai, S. Qu, R. Zboril, and A. L. Rogach, Adv. Mater. 30, 1705913 (2018). [33] X. Liu, J. Li, C. Hu, Q. Zhou, W. Zhang, M. Hu, J. Zhou, and J. Wang, Angew. Chem. Int. Ed. 52, 4805 (2013). doi: 10.1002/anie.201301307 [34] J. Tay, M. A. Parkes, K. Addison, Y. Chan, L. Zhang, H. C. Hailes, P. C. Bulman Page, S. R. Meech, L. Blancafort, and H. H. Fielding, J. Phys. Chem. Lett. 8, 765 (2017). doi: 10.1021/acs.jpclett.7b00174 [35] A. Nakata, Y. Imamura, and H. Nakai, J. Chem. Phys. 125, 064109 (2006). doi: 10.1063/1.2227379 [36] A. Nakata, Y. Imamura, T. Otsuka, and H. Nakai, J. Chem. Phys. 124, 94105 (2006). doi: 10.1063/1.2173987 [37] I. Y. Zhang, J. Wu, and X. Xu, Chem. Commun. 46, 3057 (2010). doi: 10.1039/c000677g [38] X. Chen, J. Song, Z. N. Chen, T. Jin, F. Q. Long, H. Xie, Y. S. Zheng, W. Zhuang, and L. Zhang, J. Comput. Chem. 39, 2307 (2018). doi: 10.1002/jcc.25552 [39] D. Grabarek and T. Andruniów, J. Chem. Theory Comput. 15, 490 (2019). doi: 10.1021/acs.jctc.8b00769 [40] B. Kang, K. Y. Baek, and J. Y. Lee, Bull Korean Chem. Soc. 36, 276 (2015). doi: 10.1002/bkcs.10063 [41] D. H. Friese, C. Hättig, and K. Ruud, Phys. Chem. Chem. Phys. 14, 1175 (2012). doi: 10.1039/C1CP23045J [42] D. Kánnár and P. G. Szalay, J. Mol. Model. 20, 2503 (2014). doi: 10.1007/s00894-014-2503-2 [43] M. A. Salem and A. Brown, J. Chem. Theroy Comput. 10, 3260 (2014). doi: 10.1021/ct500028w [44] M. Schreiber, M. R. Silva-Junior, S. P. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008). doi: 10.1063/1.2889385 [45] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. De Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, Wires Comput. Mol. Sci. 4, 269 (2014). doi: 10.1002/wcms.1172 [46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, CT (2016). [47] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885 [48] T. Lu. Multiwfn Manual, version 3.8(dev), Section 3.21.8, available at http://sobereva.com/multiwfn [49] M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, Nat. Methods. 8, 393 (2011). doi: 10.1038/nmeth.1596 [50] M. Kojima, H. Hayashi, T. Aotake, S. Ikeda, M. Suzuki, N. Aratani, D. Kuzuhara, and H. Yamada, Chem. Asian J. 10, 2337 (2015). doi: 10.1002/asia.201500597 [51] L. Cao, L. Zhang, Q. Wei, J. S. Zhang, D. J. Chen, S. Wang, S. J. Su, T. Wang, and Z. Y. Ge, Dyes Pigm. 176, 108242 (2020). [52] Y. L. Li, Z. P. Li, Y. Wang, A. Compaan, T. H. Ren, and W. J. Dong, Energy Environ. Sci. 6, 2907 (2013). doi: 10.1039/c3ee42001a [53] C. Yan, Z. Guo, W. Chi, W. Fu, S. A. A. Abedi, X. Liu, H. Tian, and W. H. Zhu, Nat. Commun. 12, 3869 (2021). doi: 10.1038/s41467-021-24187-5 [54] L. Xu and Q. Zhang, Sci. China Mater. 60, 1093 (2017). doi: 10.1007/s40843-016-5170-2 [55] M. Kertesz, C. H. Choi, and S. J. Yang, Chem. Rev. 105, 3448 (2005). doi: 10.1021/cr990357p [56] Y. X. Guo, G. H. Lu, J. Z. Zhuo, J. Y. Wang, X. Li, and Z. Q. Zhang, J. Mater. Chem. B 6, 2489 (2018). doi: 10.1039/C8TB00452H [57] D. K. Zhang, V. Martin, I. Garcia-Moreno, A. Costela, M. E. Perez-Ojeda, and Y. Xiao, Phys. Chem. Chem. Phys. 13, 13026 (2011). doi: 10.1039/c1cp21038f [58] W. Xu, P. Y. Ma, Q. P. Diao, L. B. Xu, X. Liu, Y. Sun, X. H. Wang, and D. Q. Song, Sens. Actuators B Chem. 252, 86 (2017). doi: 10.1016/j.snb.2017.05.137 -
suppl_data.zip
-