-
Abstract: We have investigated the formation of ammonia (NH3) from atomic N and water (H2O) on a rutile(R)-TiO2(110) surface using the temperature-programed desorption method. The formation of NH3 can be detected after coadsorption of atomic N and H2O on the R-TiO2(110) surface, desorbing from the 5-fold coordinated Ti4+ (Ti5c) sites at about 400 K, demonstrating that the NH3 formation on R-TiO2(110) is feasible at low surface temperature. During the process, both hydroxyl groups at the bridging oxygen rows and H2O on the Ti5c sites contribute to the formation of NH3, which are affected by H2O coverage. At low H2O coverage, the direct hopping of hydrogen atoms may be the dominant process for hydrogen transfer; while H2O-assisted hydrogen atoms diffusion may be preferred at high H2O coverage. Our result will be of significant help to get a deeper insight into the fundamental understandings of hydrogenation processes during the NH3 synthesis.
-
Key words:
- Ammonia /
- Hydrogen transfer /
- Temperature programmed desorption /
- R-TiO2(110)
-
Figure 5. Typical TPD spectra collected at (a) m/z = 17 (NH3+, OH+) and (b) m/z = 18 (H2O+) as a function of H2O coverage. Before H2O adsorption, R-TiO2(110) surfaces were exposed to activated N for 5 min. The dash line in (b) represents the TPD spectrum collected after the clean R-TiO2(110) surface was dosed with 1 ML H2O.
Figure 6. Schematic model of hydrogen atom diffusion in NH3 formation. (a) Hydrogen diffusion along the Ob rows toward atomic N without the assistance of H2O; (b) H2O diffusion along the Ti5c rows toward atomic N; (c) H2O-assisted hydrogen diffusion across the Ob rows. Atoms are labeled as follows: Ti5c3+ sites (open black circles), Ti6c4+ sites (filled yellow circles), Ti5c4+ sites (filled purple circles), bridge-bonded oxygen atoms (BBO, filled pink circles), atomic N (Nads, filled green circles), H atoms (filled blue circles).
-
[1] J. Guo and P. Chen, Chem. 3, 709 (2017). doi: 10.1016/j.chempr.2017.10.004 [2] C. J. M. Van der Ham, M. T. M. Koper, and D. G. H. Hetterscheid, Chem. Soc. Rev. 43, 5183 (2014). doi: 10.1039/C4CS00085D [3] R. F. Service, Science 345, 610 (2014). doi: 10.1126/science.345.6197.610 [4] V. Rosca, M. Duca, M. T. de Groot, and M. T. M. Koper, Chem. Rev. 109, 2209 (2009). doi: 10.1021/cr8003696 [5] J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, Nat. Geosci. 1, 636 (2008). doi: 10.1038/ngeo325 [6] V. Smil, Nature 400, 415 (1999). doi: 10.1038/22672 [7] R. Lan, J. T. S. Irvine, and S. Tao, Int. J. Hydrogen Energy 37, 1482 (2012). doi: 10.1016/j.ijhydene.2011.10.004 [8] A. Klerke, C. H. Christensen, J. K. Nørskov, and T. Vegge, J. Mater. Chem. 18, 2304 (2008). doi: 10.1039/b720020j [9] W. Guo, K. Zhang, Z. Liang, R. Zou, and Q. Xu, Chem. Soc. Rev. 48, 5658 (2019). doi: 10.1039/C9CS00159J [10] X. Cui, C. Tang, and Q. Zhang, Adv. Energy Mater. 8, 1800369 (2018). doi: 10.1002/aenm.201800369 [11] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S. Qiao, ACS Catal. 9, 2902 (2019). doi: 10.1021/acscatal.9b00366 [12] H. Hirakawa, M. Hashimoto, Y. Shiraishi, and T. Hirai, J. Am. Chem. Soc. 139, 10929 (2017). doi: 10.1021/jacs.7b06634 [13] G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc. 99, 7189 (1977). doi: 10.1021/ja00464a015 [14] G. N. Schrauzer, N. Strampach, L. N. Hui, M. R. Palmer, and J. Salehi, Proc. Natl. Acad. Sci. USA 80, 3873 (1983). doi: 10.1073/pnas.80.12.3873 [15] V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, Int. J. Hydrogen Energy 7, 845 (1982). doi: 10.1016/0360-3199(82)90001-5 [16] J. Soria, J. C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, J. Phys. Chem. 95, 274 (1991). doi: 10.1021/j100154a052 [17] G. N. Schrauzer, Energy Efficiency and Renewable Energy through Nanotechnology, Berlin: Springer, 601-623, (2011). [18] J. G. Edwards, J. A. Davies, D. L. Boucher, and A. Mennad, Angew. Chem. Int. Ed. 31, 480 (1992). doi: 10.1002/anie.199204801 [19] D. L. Boucher, J. A. Davies, J. G. Edwards, and A. Mennad, J. Photochem. Photobiol. A 88, 53 (1995). doi: 10.1016/1010-6030(94)03994-6 [20] X. Y. Xie, P. Xiao, W. H. Fang, G. Cui, and W. Thiel, ACS Catal. 9, 9178 (2019). doi: 10.1021/acscatal.9b01551 [21] B. M. Comer and A. J. Medford, ACS Sustainable Chem. Eng. 6, 4648 (2018). doi: 10.1021/acssuschemeng.7b03652 [22] T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, J. Phys. Chem. C 117, 10990 (2013). doi: 10.1021/jp308872y [23] T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, Phys. Chem. Chem. Phys. 14, 11491 (2012). doi: 10.1039/c2cp41549f [24] Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366 (2012). doi: 10.1021/ja304049x [25] Z. Ren, Q. Guo, C. Xu, W. Yang, C. Xiao, D. Dai, and X. Yang, Chin. J Chem. Phys. 25, 507 (2012). doi: 10.1088/1674-0068/25/05/507-512 [26] M. A. Henderson, Surf. Sci. 355, 151 (1996). doi: 10.1016/0039-6028(95)01357-1 [27] R. T. Zehr and M. A. Henderson, Surf. Sci. 602, 1507 (2008). doi: 10.1016/j.susc.2008.02.031 [28] C. Pang, A. Sasahara, and H. N. Onishi, Nanotechnology 18, 044003 (2006). [29] A. Markovits, J. Ahdjoudj, and C. Minot, Surf. Sci. 365, 649 (1996). doi: 10.1016/0039-6028(96)00753-4 [30] W. S. Epling, C. H. Peden, M. A. Henderson, and U. Diebold, Surf. Sci. 412-413, 333 (1998). doi: 10.1016/S0039-6028(98)00446-4 [31] G. Lu, A. Linsebigler, and J. T. Yates, J. Phys. Chem. 98, 11733 (1994). doi: 10.1021/j100096a017 [32] B. Kim, Z. Dohnálek, J. Szanyi, B. D. Kay, and Y. K. Kim, Surf. Sci. 652, 148 (2016). doi: 10.1016/j.susc.2016.01.032 [33] S R. S. mith, Z. Li, L. Chen, Z. Dohnálek, and B. D. Kay, J. Phys. Chem. B 118, 8054 (2014). doi: 10.1021/jp501131v [34] D. C. Sorescu, C. N. Rusu, and J. Yates, J. Phys. Chem. B 104, 4408 (2000). doi: 10.1021/jp993694a [35] D. C. Sorescu and J. Yates, J. Phys. Chem. B 106, 6184 (2002). doi: 10.1021/jp0143140 [36] X. Xie, Q. Wang, W. Fang, and G. Cui, J. Phys. Chem. C 121, 16373 (2017). doi: 10.1021/acs.jpcc.7b04811 [37] B. Kim, B. D. Kay, Z. Dohnálek, and Y. K. Kim, J. Phys. Chem. C 119, 1130 (2015). doi: 10.1021/jp5109619 [38] Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, and Z. Dohnálek, J. Phys. Chem. B 110, 21840 (2006). doi: 10.1021/jp063619h [39] S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 96, 066107 (2006). doi: 10.1103/PhysRevLett.96.066107 [40] Z. Geng, X. Jin, R. Wang, X. Chen, Q. Guo, Z. Ma, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 10956 (2018). doi: 10.1021/acs.jpcc.8b02945 [41] J. Lee, D. C. Sorescu, X. Deng, and K. D. Jordan, J. Phys. Chem. Lett. 4, 53 (2013). doi: 10.1021/jz301727n [42] J. Matthiesen, J. O. Hansen, S. Wendt, E. Lira, R. Schaub, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 102, 226101 (2009). doi: 10.1103/PhysRevLett.102.226101 [43] C. Xu, R. Wang, F. Xu, Q. Guo, X. A. Wang, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 13774 (2018). doi: 10.1021/acs.jpcc.8b00724 [44] F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520 [45] Y. Du, N. G. Petrik, N. A. Deskins, Z. Wang, M. A. Henderson, G. A. Kimmel, and I. Lyubinetsky, Phys. Chem. Chem. Phys. 14, 3066 (2012). doi: 10.1039/C1CP22515D -
suppl_data.zip
-