Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles

Yu Zhang Qingguang Zhu Yaqi Zhao Xin Yang Ling Jiang

Yu Zhang, Qingguang Zhu, Yaqi Zhao, Xin Yang, Ling Jiang. Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210150
Citation: Yu Zhang, Qingguang Zhu, Yaqi Zhao, Xin Yang, Ling Jiang. Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210150

doi: 10.1063/1674-0068/cjcp2210150

Preparation and Supercapacitive Performance of CuFe2O4 Hollow-Spherical Nanoparticles

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  XRD pattern of CuFe2O4.

    Figure  2.  (a, b) SEM spectra of CuFe2O4 at different magnifications. (c) TEM image of CuFe2O4 and (d) HRTEM image of CuFe2O4 (the insert shows EDAX analyses of CuFe2O4).

    Figure  3.  CV curves of CuFe2O4 samples in electrolytes with different concentrations of (a) 1 mol/L KOH, (b) 3 mol/L KOH, (c) 6 mol/L KOH. (d) CV comparison of different concentrations at scan rate of 20 mV/s.

    Figure  4.  GCD curves of CuFe2O4 in electrolytes with different concentrations of (a) 1 mol/L KOH, (b) 3 mol/L KOH, (c) 6 mol/L KOH. (d) Specific capacitances, (e) cycling stabilities at 3 A/g, and (f) EIS spectrum of CuFe2O4 in electrolytes with different concentrations, the insert in (f) displays equivalent circuit diagram .

    Table  I.   Comparison of the electrochemical parameters for supercapacitor with CuFe2O4 as electrode active material reported in the literature.

    MaterialElectrolyteTest conditionsSpecific capacitance/(F/g)Reference
    CuFe2O4 0.5 mol/L H2SO4 scant rate 0.004 V/s 434.7 [34]
    CuFe2O4 3 mol/L KOH current density 3 A/g 368.2 This work
    CuFe2O4 nanospheres 1 mol/L KOH current density 0.6 A/g 334 [29]
    CuFe2O4 nanoparticles 1 mol/L KOH current density 0.6 A/g 189.2 [38]
    CuFe2O4 hollow fibrous 1 mol/L KOH current density 0.5 A/g 28 [39]
    下载: 导出CSV
  • [1] X. Wei, B. Liu, Z. Chen, K. Wu, Y. Liu, X. Yuan, X. Zhang, X. Liu, Q. Wan, and Y. Song, Energy Storage Mater. 51, 815 (2022). doi: 10.1016/j.ensm.2022.07.022
    [2] J. Xu, Z. Dong, K. Huang, L. Wang, Z. Wei, L. Yu, and X. Wu, Scr. Mater. 209, 114368 (2022). doi: 10.1016/j.scriptamat.2021.114368
    [3] J. Xu, Y. Liu, P. Chen, A. Wang, K. J. Huang, L. Fang, and X. Wu, J. Colloid Interface Sci. 620, 119 (2022). doi: 10.1016/j.jcis.2022.04.009
    [4] H. Liu, Y. He, K. Cao, Y. Jiang, X. Liu, Q. S. Jing, and L. Jiao, Chem. Eng. J. 433, 133572 (2022). doi: 10.1016/j.cej.2021.133572
    [5] J. Xu, Q. Liu, Z. Dong, L. Wang, X. Xie, Y. Jiang, Z. Wei, Y. Gao, Y. Zhang, and K. Huang, ACS App. Mater. Inter. 13, 54974 (2021). doi: 10.1021/acsami.1c15484
    [6] L. Li, Q. Zhang, B. He, R. Pan, Z. Wang, M. Chen, Z. Wang, K. Yin, Y. Yao, L. Wei, and L. Sun, Adv. Mater. 34, e2104327 (2022). doi: 10.1002/adma.202104327
    [7] X. Xia, C. F. Du, S. Zhong, Y. Jiang, H. Yu, W. Sun, H. Pan, X. Rui, and Y. Yu, Adv. Funct. Mater. 32, 2110280 (2021). doi: 10.1002/adfm.202110280
    [8] M. Wan, R. Zeng, J. Meng, Z. Cheng, W. Chen, J. Peng, W. Zhang, and Y. Huang, Nano-Micro Lett. 14, 9 (2021). doi: 10.1007/s40820-021-00742-z
    [9] Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan, J. Dong, L. Mai, and D. L. Peng, Nano-Micro Lett. 13, 55 (2021). doi: 10.1007/s40820-020-00567-2
    [10] C. Li, T. Zhao, X. Feng, S. Liu, L. Li, R. Zha, Y. Zhang, and Z. Zhang, J. Alloys Compd. 859, 157815 (2021). doi: 10.1016/j.jallcom.2020.157815
    [11] S. Zheng, Q. Li, H. Xue, H. Pang, and Q. Xu, Nat. Rev. Chem. 7, 305 (2020).
    [12] K.-B. Wang, Q. Xun, and Q. Zhang, Energychem 2, 100025 (2020). doi: 10.1016/j.enchem.2019.100025
    [13] Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, and H. Pang, Angew. Chem. Int. Ed. 60, 25318 (2021). doi: 10.1002/anie.202112381
    [14] C. Yang, R. Gao, and H. Yang, Energychem 3, 100062 (2021). doi: 10.1016/j.enchem.2021.100062
    [15] P. Geng, M. Du, C. Wu, T. Luo, Y. Zhang, and H. Pang, Inorg. Chem. Front. 9, 2389 (2022). doi: 10.1039/D2QI00392A
    [16] C. Li, J. Balamurugan, D. C. Nguyen, N. H. Kim, and J. H. Lee, ACS App. Mater. Inter. 12, 21505 (2020). doi: 10.1021/acsami.9b23346
    [17] H. Gao, S. Xin, and J. B. Goodenough, Chem 3, 26 (2017). doi: 10.1016/j.chempr.2017.06.008
    [18] D. Yang, M. Z. Su, H. J. Zheng, Z. Zhao, G. Li, X. T. Kong, H. Xie, H. J. Fan, W. Q. Zhang, and L. Jiang, Chin. J. Chem. Phys. 32, 223 (2019). doi: 10.1063/1674-0068/cjcp1902032
    [19] K. Cao, Y. Jia, S. Wang, K. J. Huang, and H. Liu, J. Alloys Compd. 854, 157179 (2021). doi: 10.1016/j.jallcom.2020.157179
    [20] D. Yang, M. Z. Su, H. J. Zheng, Z. Zhao, X. T. Kong, G. Li, H. Xie, W. Q. Zhang, H. J. Fan, and L. Jiang, Chin. J. Chem. Phys. 33, 160 (2020). doi: 10.1063/1674-0068/cjcp1910175
    [21] Q. Zhang, D. Gu, H. Li, Z. Xu, H. Sun, J. Li, L. Wang, and L. Shen, Electrochim. Acta 367, 137455 (2021). doi: 10.1016/j.electacta.2020.137455
    [22] V. S. Zhandun and A. V. Nemtsev, Mater. Chem. Phys. 259, 124065 (2021). doi: 10.1016/j.matchemphys.2020.124065
    [23] J. Bejar, F. Espinosa-Magana, M. Guerra-Balcazar, J. Ledesma-Garcia, L. Alvarez-Contreras, N. Arjona, and L. G. Arriaga, ACS App. Mater. Inter. 12, 53760 (2020). doi: 10.1021/acsami.0c14920
    [24] B. Sriram, J. N. Baby, S. F. Wang, M. George, X. B. Joseph,and J. T. Tsai, ACS Appl. Electron. Mater. 3, 362 (2021). doi: 10.1021/acsaelm.0c00906
    [25] N. Stüsser, M. Reehuis, M. Tovar, B. Klemke, A. Hoser, and J. U. Hoffmann, J. Magn. Magn. Mater. 506, 166683 (2020). doi: 10.1016/j.jmmm.2020.166683
    [26] C. W. Cady, G. Gardner, Z. O. Maron, M. Retuerto, Y. B. Go, S. Segan, M. Greenblat, and G. C. Dismukes, ACS Catal. 5, 3403 (2015). doi: 10.1021/acscatal.5b00265
    [27] H. X. Zhong, Y. Zhang, and X. B. Zhang, Chem 4, 196 (2018). doi: 10.1016/j.chempr.2018.01.015
    [28] Y. Yang, J. Liu, J. Ding, Y. Yu, and J. Zhang, J. Hazard. Mater. 424, 127556 (2022). doi: 10.1016/j.jhazmat.2021.127556
    [29] M. Zhu, D. Meng, C. Wang, and G. Diao, ACS App. Mater. Inter. 5, 6030 (2013). doi: 10.1021/am4007353
    [30] W. Zhang, S. Feng, J. Ma, F. Zhu, and S. Komarneni, Environ. Sci. Pollut. Res. Int. 29, 67003 (2022). doi: 10.1007/s11356-022-20500-x
    [31] Y. Zhang, T. Wei, K. Xu, Z. Ren, L. Xiao, J. Song, and F. Zhao, RSC Adv. 5, 75630 (2015). doi: 10.1039/C5RA12199J
    [32] S. B. Bandgar, M. M. Vadiyar, U. P. Suryawanshi, C. L. Jambhale, J. H. Kim, and S. S. Kolekar, Mater. Lett. 279, 128514 (2020). doi: 10.1016/j.matlet.2020.128514
    [33] X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang, and M. Chen, J. Mater. Sci. 53, 2648 (2017).
    [34] Y. Guo, Y. Chen, X. Hu, Y. Yao, and Z. Li, Colloids Surf. A: Physicochem. Eng. Asp. 631, 127676 (2021). doi: 10.1016/j.colsurfa.2021.127676
    [35] L. Zhang, D. Shi, T. Liu, M. Jaroniec, and J. Yu, Mater. Today 25, 35 (2019). doi: 10.1016/j.mattod.2018.11.002
    [36] E. H. Lee, E. B. Kim, M. S. Akhtar, and S. Ameen, Ceram. Int. 48, 16667 (2022). doi: 10.1016/j.ceramint.2022.02.213
    [37] J. Kim, A. I. Inamdar, Y. Jo, S. Cho, A. T. A. Ahmed, B. Hou, S. N. Cha, T. G. Kim, H. Kim, and H. Im, J. Mater. Chem. A 8, 13459 (2020). doi: 10.1039/D0TA01728K
    [38] B. Saravanakumar, S. P. Ramachandran, G. Ravi, V. Ganesh, R. K. Guduru, and R. Yuvakkumar, Vacuum 168, 108798 (2019). doi: 10.1016/j.vacuum.2019.108798
    [39] J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, and Q. Xue, CrystEngComm 14, 5879 (2012). doi: 10.1039/c2ce25684c
    [40] W. Liang, W. Yang, S. Sakib, and I. Zhitomirsky, Molecules 27, 5313 (2022). doi: 10.3390/molecules27165313
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  151
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 录用日期:  2022-12-09
  • 网络出版日期:  2022-12-10

目录

    /

    返回文章
    返回