-
Abstract: UV-B (280–320 nm) sunscreening is crucial for lives on Earth. Examining the role of surrounding of UV-B screening molecules can help us better understand UV-B absorption. Water is ubiquitous in cells as the solvent, but its impacts on UV-B absorption of sunscreen agents are underexplored. Herein, we report a first-principle study on UV-B absorption of sinapate esters (SM) and relevant molecular species, with a focus on the solvent effect of water. The capability of UV-B screening by anions of SM, the proposed species for actual sunscreening, is shaped by water. Both the implicit water providing the dielectric environment of solvation and the explicit water molecules forming hydrogen bonding to SM anion can appreciably alter the nature of transition orbitals responsible to the UV-B absorption of the anion. Finally, we find the molecular dipole moment of an organic UV-B screening agent can be an indicator of its UV-B screening sensitivity to the surrounding water. Our work may serve as a starting point of developing new water-soluble UV-B screening agent.
-
Key words:
- UV-B /
- Sunscreen /
- Solvent effect /
- Time-dependent density functional theory
-
Figure 4. (a) Structures of trans -SM2− in the gas phase and explicit solvation model, respectively. (b) The UV-Vis oscillator strength of SM2− in the gas phase (red points); in the explicit solvation model (black points) and the deformed anion after removal of water molecules in the explicit solvation model (blue points).
-
[1] É. Pelletier, P. Sargian, J. Payet, and S. Demers, Photochem. Photobiol. 82, 981 (2006). doi: 10.1562/2005-09-18-RA-688.1 [2] M. Zhang, Y. Chu, Z. Wu, Y. Guo, Y. Shi, C. Wang, M. Wang, Y. Zhong, H. Zhang, Y. Wang, J. Wang, and G. Zhao, Chin. J. Chem. Phys. 36 , 25 (2023). doi: 10.1063/1674-0068/cjcp2104078 [3] S. Lautenschlager, H. C. Wulf, and M. R. Pittelkow, Lancet 370, 528 (2007). doi: 10.1016/S0140-6736(07)60638-2 [4] M. M. Caldwell, R. Robberecht, and S. D. Flint, Physiol. Plant 58, 445 (1983). doi: 10.1111/j.1399-3054.1983.tb04206.x [5] T. A. Day, T. C. Vogelmann, and E. H. DeLucia, Oecologia 513, 92 (1992). doi: 10.1007/BF00317843 [6] L. C. Landry, C. C. S. Chapple, and R. L. Last, Plant Physiol. 109, 1159 (1995). doi: 10.1104/pp.109.4.1159 [7] M. D. Horbury, E. L. Holt, L. M. M. Mouterde, P. Balaguer, J. Cebrian, L. Blasco, F. Allais, and V. G. Stavros, Nat. Commun. 10, 4748 (2019). doi: 10.1038/s41467-019-12719-z [8] M. D. Horbury, A. L. Flourat, S. E. Greenough, F. Allais, and V. G. Stavros, Chem. Commun. 54, 936 (2018). doi: 10.1039/C7CC09061G [9] M. Ruegger and C. Chapple, Genetics 159, 1741 (2001). doi: 10.1093/genetics/159.4.1741 [10] C. C. Chapple, T. Vogt, B. E. Ellis, and C. R. Somerville, Plant Cell 4, 1413 (1992). doi: 10.1105/tpc.4.11.1413 [11] J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, and T. S. Zwier, J. Am. Chem. Soc. 136, 14780 (2014). doi: 10.1021/ja5059026 [12] J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, and K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083 [13] L. L. Jiang, W. L. Liu, Y. F. Song, X. He, Y. Wang, H. L. Wu, and Y. Q. Yang, Chin. J. Chem. Phys. 25, 577 (2012). doi: 10.1088/1674-0068/25/05/577-584 [14] Z. R. Wang, L. X. Zhu, X. L. Zhang, B. Li, Y. L. Liu, Y. F. Wan, Q. Li, Y. Wan, H. Yin, and Y. Shi, Chin. J. Chem. Phys. 35, 289 (2022). doi: 10.1063/1674-0068/cjcp2111251 [15] J. Li, C. K. Wang, and Y. Z. Song, Chin. J. Chem. Phys. 30, 63 (2017). doi: 10.1063/1674-0068/30/cjcp1607142 [16] Y. G. Ermakova, T. Sen, Y. A. Bogdanova, A. Y. Smirnov, N. S. Baleeva, A. I. Krylov, and M. S. Baranov, J. Phys. Chem. Lett. 9, 1958 (2018). doi: 10.1021/acs.jpclett.8b00512 [17] B. Dereka, D. Svechkarev, A. Rosspeintner, A. Aster, M. Lunzer, R. Liska, A. M. Mohs, and E. Vauthey, Nat. Commun. 11, 1925 (2020). doi: 10.1038/s41467-020-15681-3 [18] B. Dereka, A. Rosspeintner, M. Krzeszewski, D. T. Gryko, and E. Vauthey, Angew. Chem. Int. Ed. 55, 15624 (2016). doi: 10.1002/anie.201608567 [19] B. Dereka and E. Vauthey, J. Phys. Chem. Lett. 8, 3927 (2017). doi: 10.1021/acs.jpclett.7b01821 [20] H. Song, K. Wang, Z. Kuang, Y. S. Zhao, Q. Guo, and A. Xia, Phys. Chem. Chem. Phys. 21, 3894 (2019). doi: 10.1039/C8CP06459H [21] K. S. Kjaer, K. Kunnus, T. C. B. Harlang, T. B. Van Driel, K. Ledbetter, R. W. Hartsock, M. E. Reinhard, S. Koroidov, L. Li, M. G. Laursen, E. Biasin, F. B. Hansen, P. Vester, M. Christensen, K. Haldrup, M. M. Nielsen, P. Chabera, Y. Liu, H. Tatsuno, C. Timm, J. Uhlig, V. Sundstom, Z. Nemeth, D. S. Szemes, E. Bajnoczi, G. Vanko, R. Alonso-Mori, J. M. Glownia, S. Nelson, M. Sikorski, D. Sokaras, H. T. Lemke, S. E. Canton, K. Warnmark, P. Persson, A. A. Cordones, and K. J. Gaffney, Phys. Chem. Chem. Phys. 20, 4238 (2018). doi: 10.1039/C7CP07838B [22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. , J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C. 01, Wallingford, CT: Gaussian Inc., (2019). [23] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). doi: 10.1103/PhysRevB.37.785 [24] A. D. Becke, J. Chem. Phys. 98, 5648 (1992). doi: 10.1063/1.464913 [25] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi: 10.1021/j100096a001 [26] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. 109, 8218 (1998). doi: 10.1063/1.477483 [27] J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). doi: 10.1039/b810189b [28] J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). doi: 10.1021/cr9904009 [29] R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, J. Chem. Phys. 125, 054103 (2006). doi: 10.1063/1.2222364 [30] L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, J. Comput. Chem. 30, 2157 (2009). doi: 10.1002/jcc.21224 [31] J. J. P. Stewart, J. Comput. Aided Mol. Des. 4, 1 (1990). doi: 10.1007/BF00128336 [32] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885 [33] J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083 [34] B. Smyk and R. Drabent, Analyst 114, 723 (1989). doi: 10.1039/an9891400723 [35] G. J. Brealey and M. Kasha, J. Am. Chem. Soc. 77, 4462 (1955). doi: 10.1021/ja01622a006 [36] M. Kasha, Discuss. Faraday Soc. 9, 14 (1950). doi: 10.1039/DF9500900014 [37] D. Vuckovic, A. I. Tinoco, L. Ling, C. Renicke, J. R. Pringle, and W. A. Mitch, Science 376, 644 (2022). doi: 10.1126/science.abn2600 [38] C. X. Li, W. W. Guo, B. B. Xie, and G. Cui, J. Chem. Phys. 145, 074308 (2016). doi: 10.1063/1.4961261 [39] X. P. Chang, L. Yu, T. S. Zhang, and G. Cui, Phys. Chem. Chem. Phys. 24, 13293 (2022). doi: 10.1039/D2CP01263D [40] N. G. K. Wong, J. A. Berenbeim, M. Hawkridge, E. Matthews, and C. E. H. Dessent, Phys. Chem. Chem. Phys. 21, 14311 (2019). doi: 10.1039/C8CP06794E [41] L. Beyere, S. Yarasi, and G. Loppnow, J. Raman Spectrosc. 34, 743 (2003). doi: 10.1002/jrs.1042 -
suppl_data.zip
-