Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations
-
Abstract: A minimum-modified Debye-Hückel (DH) theory for electrolytes with size asymmetry is developed. Compared with the conventional DH theory, the minimum-modified DH theory only introduces an extra surface charge density to capture the electrostatic effect of the size asymmetry of the electrolytes and hence facilitates a boundary element method for electrostatic potential calculation. This theory can distinguish the electrostatic energies and excess chemical potentials of ions with the same sizes but opposite charges, and is applied to a binary primitive electrolyte solution with moderate electrostatic coupling. Compared with the hyper-netted chain theory, the validity of this modified DH theory demonstrates significant improvement over the conventional DH theory.
-
Key words:
- Electrolyte solution /
- Size-asymmetry /
- Debye-Hückel theory /
- Electrostatic energy /
- Chemical potential
-
Figure 1. A schematic plot for the MMDH model of a spherical ion with point charge Q and radius b, where σe is a surface charge density due to size asymmetry of the electrolyte solution, kD is the inverse Debye length,
$\Phi(r) $ is the electric potential. The response equation for$\Phi(r) $ is valid in the region r>b.Figure 2. (a) Reduced electrostatic energy βue, (b) reduced excess chemical potential βμex for ions with size
$\sigma_{2}$ =0.7 and tunable$k_{\rm{D}}$ , from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.Figure 3. (a) Reduced electrostatic energy βue, (b) reduced excess chemical potential βμex for ions with size
$\sigma_{2}$ = 0.5 and tunable$k_{\rm{D}}$ , from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.Figure 4. Thermodynamic properties (a) Reduced electrostatic energy βue, (b) Reduced excess chemical potential βμex for ions with size
$\sigma_{2}$ =0.25 and tunable$k_{\rm{D}}$ , from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.Figure 5. Thermodynamic properties (a) Reduced electrostatic energy βue, (b) Reduced excess chemical potential βμex for ions with size
$\sigma_{2}$ =1, 0.15 and tunable$k_{\rm{D}}$ , from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye. -
[1] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Chem. Rev. 116, 7078 (2016). doi: 10.1021/acs.chemrev.5b00744 [2] B. Mennucci, R. Cammi, and W. Interscience, Contin-uum Solvation Models in Chemical Physics: from Theory to Applications, Wiley Online Library, (2007). [3] N. E. Chayen and E. Saridakis, Nat. Methods 5, 147 (2008). doi: 10.1038/nmeth.f.203 [4] T. Markovich, D. Andelman, and R. Podgornik, J. Chem. Phys. 142, 044702 (2015). doi: 10.1063/1.4905954 [5] Y. Levin, J. Stat. Phys. 110, 825 (2003). doi: 10.1023/A:1022116020311 [6] A. A. Kornyshev, M. P. Tosi, and J. Ulstrup, Electron and Ion Transfer in Condensed Media: Theoretical Physics for Reaction Kinetics, Singapore: World Scientific, (1997). [7] J. Blumberger and M. Sprik, in Computer Simulations in Condensed Matter Systems: from Materials to Chemical Biology, Vol. 2(Lecture Notes in Physics, Vol. 704), M. Ferrariao, G. Ciccotti, and K. Binder Eds., Heidelberg: Springer, 481–506 (2006) . [8] M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993). doi: 10.1103/PhysRevLett.71.3826 [9] J. N. Aqua, S. Banerjee, and M. E. Fisher, Phys. Rev. E 72, 041501 (2005). doi: 10.1103/PhysRevE.72.041501 [10] P. Ren, J. Chun, D. G. Thomas, M. J. Schnieders, M. Marucho, J. Zhang, and N. A. Baker, Q. Rev. Biophys. 45, 427 (2012). doi: 10.1017/S003358351200011X [11] H. X. Zhou and X. Pang, Chem. Rev. 118, 1691 (2018). doi: 10.1021/acs.chemrev.7b00305 [12] D. J. M. P. Attard and B. W. Ninham, J. Chem. Phys. 88, 4987 (1988). doi: 10.1063/1.454678 [13] P. Attard, Phys. Rev. E 48, 3604 (1993). doi: 10.1103/PhysRevE.48.3604 [14] A. McBride, M. Kohonen, and P. Attard, J. Chem. Phys. 109, 2423 (1998). doi: 10.1063/1.476810 [15] R. Kjellander, J. Phys. Chem. 99, 10392 (1995). doi: 10.1021/j100025a048 [16] C. W. Outhwaite, M. Molero, and L. B. Bhuiyan, J. Chem. Soc., Faraday Trans. 89, 1315 (1993). doi: 10.1039/FT9938901315 [17] L. Bhuiyan, C. Outhwaite, and D. Henderson, J. Chem. Phys. 123, 034704 (2005). doi: 10.1063/1.1992427 [18] C. W. Outhwaite and L. B. Bhuiyan, J. Chem. Phys. 155, 014504 (2021). doi: 10.1063/5.0054203 [19] J. Ulander, H. Greberg, and R. Kjellander, J. Chem. Phys. 115, 7144 (2001). doi: 10.1063/1.1398587 [20] R. Kjellander, Phys. Chem. Chem. Phys. 18, 18985 (2016). doi: 10.1039/C6CP02418A [21] R. Kjellander, Phys. Chem. Chem. Phys. 22, 23952 (2020). doi: 10.1039/D0CP02742A [22] T. Xiao and X. Song, J. Chem. Phys. 135, 104104 (2011). doi: 10.1063/1.3632052 [23] T. Xiao and X. Song, J. Chem. Phys. 138, 114105 (2013). doi: 10.1063/1.4794790 [24] T. Xiao and X. Song, J. Chem. Phys. 141, 134104 (2014). doi: 10.1063/1.4896763 [25] T. Xiao, Electrochim. Acta 178, 101 (2015). doi: 10.1016/j.electacta.2015.06.145 [26] G. I. Guerrero-García, Biophys. Chem. 282, 106747 (2021). [27] Y. C. Kim, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 95, 195703 (2005). doi: 10.1103/PhysRevLett.95.195703 [28] S. Bastea, J. Chem. Phys. 135, 084515 (2011). doi: 10.1063/1.3629782 [29] H. Wu, H. Li, F. J. Solis, M. Olvera de la Cruz, and E. Luijten, J. Chem. Phys. 149, 164701 (2018). doi: 10.1063/1.5047550 [30] A. Gupta, B. Rallabandi, and H. A. Stone, Phys. Rev. Fluids 4, 043702 (2019). doi: 10.1103/PhysRevFluids.4.043702 [31] D. M. Zuckerman, M. E. Fisher, and S. Bekiranov, Phys. Rev. E 64, 011206 (2001). doi: 10.1103/PhysRevE.64.011206 [32] C. Outhwaite and L. Bhuiyan, J. Chem. Phys. 84, 3461 (1986). doi: 10.1063/1.450231 [33] J. Ulander and R. Kjellander, J. Chem. Phys. 109, 9508 (1998). doi: 10.1063/1.477613 [34] B. Forsberg, J. Ulander, and R. Kjellander, J. Chem. Phys. 122, 064502 (2005). doi: 10.1063/1.1843811 [35] T. Xiao and X. Song, J. Chem. Phys. 146, 124118 (2017). doi: 10.1063/1.4978895 [36] D. A. McQuarrie, Statistical Mechanics, New York, Evanston, San Francisco, London:Harper and Row, (1976) . [37] H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006). doi: 10.1103/RevModPhys.78.159 [38] P. M. König, R. Roth, and K. Mecke, Phys. Rev. Lett. 93, 160601 (2004). doi: 10.1103/PhysRevLett.93.160601 [39] H. Hansen-Goos, R. Roth, K. Mecke, and S. Dietrich, Phys. Rev. Lett. 99, 128101 (2007). doi: 10.1103/PhysRevLett.99.128101 [40] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, London: Academic, (1986) . [41] Z. Hu, J. Chem. Phys. 156, 034111 (2022). doi: 10.1063/5.0078007 [42] A. H. Juffer, E. F. F. Botta, B. A. M. Van Keulen, A. Van der Ploeg, and H. J. C. Berendsen, J. Comput. Phys. 97, 144 (1991). doi: 10.1016/0021-9991(91)90043-K [43] B. Larsen, J. Chem. Phys. 68, 4511 (1978). doi: 10.1063/1.435555 [44] E. Gutiérrez-Valladares, M. Lukšič, B. Millán-Malo, B. Hribar-Lee, and V. Vlachy, Condens. Matter Phys. 14, 33003 (2011). doi: 10.5488/CMP.14.33003 [45] H. Jiang and H. Adidharma, Mol. Simulat. 41, 727 (2015). doi: 10.1080/08927022.2014.923572 -
CJCP2209140SP.docx
-