Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations

Tiejun Xiao Yun Zhou

Tiejun Xiao, Yun Zhou. Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209140
Citation: Tiejun Xiao, Yun Zhou. Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209140

doi: 10.1063/1674-0068/cjcp2209140

Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  A schematic plot for the MMDH model of a spherical ion with point charge Q and radius b, where σe is a surface charge density due to size asymmetry of the electrolyte solution, kD is the inverse Debye length, $\Phi(r) $ is the electric potential. The response equation for $\Phi(r) $ is valid in the region r>b.

    Figure  2.  (a) Reduced electrostatic energy βue, (b) reduced excess chemical potential βμex for ions with size $\sigma_{2}$=0.7 and tunable $k_{\rm{D}}$, from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.

    Figure  3.  (a) Reduced electrostatic energy βue, (b) reduced excess chemical potential βμex for ions with size $\sigma_{2}$= 0.5 and tunable $k_{\rm{D}}$, from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.

    Figure  4.  Thermodynamic properties (a) Reduced electrostatic energy βue, (b) Reduced excess chemical potential βμex for ions with size $\sigma_{2}$=0.25 and tunable $k_{\rm{D}}$, from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.

    Figure  5.  Thermodynamic properties (a) Reduced electrostatic energy βue, (b) Reduced excess chemical potential βμex for ions with size $\sigma_{2}$=1, 0.15 and tunable $k_{\rm{D}}$, from the HNC theory (filled square and circle), the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle). The lines are guides to the eye.

  • [1] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Chem. Rev. 116, 7078 (2016). doi: 10.1021/acs.chemrev.5b00744
    [2] B. Mennucci, R. Cammi, and W. Interscience, Contin-uum Solvation Models in Chemical Physics: from Theory to Applications, Wiley Online Library, (2007).
    [3] N. E. Chayen and E. Saridakis, Nat. Methods 5, 147 (2008). doi: 10.1038/nmeth.f.203
    [4] T. Markovich, D. Andelman, and R. Podgornik, J. Chem. Phys. 142, 044702 (2015). doi: 10.1063/1.4905954
    [5] Y. Levin, J. Stat. Phys. 110, 825 (2003). doi: 10.1023/A:1022116020311
    [6] A. A. Kornyshev, M. P. Tosi, and J. Ulstrup, Electron and Ion Transfer in Condensed Media: Theoretical Physics for Reaction Kinetics, Singapore: World Scientific, (1997).
    [7] J. Blumberger and M. Sprik, in Computer Simulations in Condensed Matter Systems: from Materials to Chemical Biology, Vol.2(Lecture Notes in Physics, Vol. 704), M. Ferrariao, G. Ciccotti, and K. Binder Eds., Heidelberg: Springer, 481–506 (2006) .
    [8] M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993). doi: 10.1103/PhysRevLett.71.3826
    [9] J. N. Aqua, S. Banerjee, and M. E. Fisher, Phys. Rev. E 72, 041501 (2005). doi: 10.1103/PhysRevE.72.041501
    [10] P. Ren, J. Chun, D. G. Thomas, M. J. Schnieders, M. Marucho, J. Zhang, and N. A. Baker, Q. Rev. Biophys. 45, 427 (2012). doi: 10.1017/S003358351200011X
    [11] H. X. Zhou and X. Pang, Chem. Rev. 118, 1691 (2018). doi: 10.1021/acs.chemrev.7b00305
    [12] D. J. M. P. Attard and B. W. Ninham, J. Chem. Phys. 88, 4987 (1988). doi: 10.1063/1.454678
    [13] P. Attard, Phys. Rev. E 48, 3604 (1993). doi: 10.1103/PhysRevE.48.3604
    [14] A. McBride, M. Kohonen, and P. Attard, J. Chem. Phys. 109, 2423 (1998). doi: 10.1063/1.476810
    [15] R. Kjellander, J. Phys. Chem. 99, 10392 (1995). doi: 10.1021/j100025a048
    [16] C. W. Outhwaite, M. Molero, and L. B. Bhuiyan, J. Chem. Soc., Faraday Trans. 89, 1315 (1993). doi: 10.1039/FT9938901315
    [17] L. Bhuiyan, C. Outhwaite, and D. Henderson, J. Chem. Phys. 123, 034704 (2005). doi: 10.1063/1.1992427
    [18] C. W. Outhwaite and L. B. Bhuiyan, J. Chem. Phys. 155, 014504 (2021). doi: 10.1063/5.0054203
    [19] J. Ulander, H. Greberg, and R. Kjellander, J. Chem. Phys. 115, 7144 (2001). doi: 10.1063/1.1398587
    [20] R. Kjellander, Phys. Chem. Chem. Phys. 18, 18985 (2016). doi: 10.1039/C6CP02418A
    [21] R. Kjellander, Phys. Chem. Chem. Phys. 22, 23952 (2020). doi: 10.1039/D0CP02742A
    [22] T. Xiao and X. Song, J. Chem. Phys. 135, 104104 (2011). doi: 10.1063/1.3632052
    [23] T. Xiao and X. Song, J. Chem. Phys. 138, 114105 (2013). doi: 10.1063/1.4794790
    [24] T. Xiao and X. Song, J. Chem. Phys. 141, 134104 (2014). doi: 10.1063/1.4896763
    [25] T. Xiao, Electrochim. Acta 178, 101 (2015). doi: 10.1016/j.electacta.2015.06.145
    [26] G. I. Guerrero-García, Biophys. Chem. 282, 106747 (2021).
    [27] Y. C. Kim, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 95, 195703 (2005). doi: 10.1103/PhysRevLett.95.195703
    [28] S. Bastea, J. Chem. Phys. 135, 084515 (2011). doi: 10.1063/1.3629782
    [29] H. Wu, H. Li, F. J. Solis, M. Olvera de la Cruz, and E. Luijten, J. Chem. Phys. 149, 164701 (2018). doi: 10.1063/1.5047550
    [30] A. Gupta, B. Rallabandi, and H. A. Stone, Phys. Rev. Fluids 4, 043702 (2019). doi: 10.1103/PhysRevFluids.4.043702
    [31] D. M. Zuckerman, M. E. Fisher, and S. Bekiranov, Phys. Rev. E 64, 011206 (2001). doi: 10.1103/PhysRevE.64.011206
    [32] C. Outhwaite and L. Bhuiyan, J. Chem. Phys. 84, 3461 (1986). doi: 10.1063/1.450231
    [33] J. Ulander and R. Kjellander, J. Chem. Phys. 109, 9508 (1998). doi: 10.1063/1.477613
    [34] B. Forsberg, J. Ulander, and R. Kjellander, J. Chem. Phys. 122, 064502 (2005). doi: 10.1063/1.1843811
    [35] T. Xiao and X. Song, J. Chem. Phys. 146, 124118 (2017). doi: 10.1063/1.4978895
    [36] D. A. McQuarrie, Statistical Mechanics, New York, Evanston, San Francisco, London:Harper and Row, (1976) .
    [37] H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006). doi: 10.1103/RevModPhys.78.159
    [38] P. M. König, R. Roth, and K. Mecke, Phys. Rev. Lett. 93, 160601 (2004). doi: 10.1103/PhysRevLett.93.160601
    [39] H. Hansen-Goos, R. Roth, K. Mecke, and S. Dietrich, Phys. Rev. Lett. 99, 128101 (2007). doi: 10.1103/PhysRevLett.99.128101
    [40] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, London: Academic, (1986) .
    [41] Z. Hu, J. Chem. Phys. 156, 034111 (2022). doi: 10.1063/5.0078007
    [42] A. H. Juffer, E. F. F. Botta, B. A. M. Van Keulen, A. Van der Ploeg, and H. J. C. Berendsen, J. Comput. Phys. 97, 144 (1991). doi: 10.1016/0021-9991(91)90043-K
    [43] B. Larsen, J. Chem. Phys. 68, 4511 (1978). doi: 10.1063/1.435555
    [44] E. Gutiérrez-Valladares, M. Lukšič, B. Millán-Malo, B. Hribar-Lee, and V. Vlachy, Condens. Matter Phys. 14, 33003 (2011). doi: 10.5488/CMP.14.33003
    [45] H. Jiang and H. Adidharma, Mol. Simulat. 41, 727 (2015). doi: 10.1080/08927022.2014.923572
  • CJCP2209140SP.docx
  • 加载中
图(5)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  191
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-10-31
  • 网络出版日期:  2022-11-01

目录

    /

    返回文章
    返回