Effects of Hydrogen Bonds on Two-Photon Absorption of Green Fluorescent Protein Chromophore Analogue
-
Abstract: Effects of hydrogen bonds on two-photon absorption (TPA) of a new donor-acceptor type green fluorescent protein chromophore analogue are investigated by employing a combined molecular dynamics and quantum chemistry method. The probable configurations of the chromophore in water are extracted from molecular dynamics simulation and the TPA properties of more than twenty hydrogen bond complexes are computed by quadratic response theory. Thereby, the structure and property relations are established. Three types of hydrogen bonds including O···H−O, N−H···O and N···H−O can be formed between the chromophore and water molecules. The O···H−O induces a little decrease of TPA cross section with a red-shifted wavelength. The N−H···O gives rise to a great enhancement of TPA at a longer wavelength, while the N···H−O decreases TPA significantly and makes the wavelength blue-shifted. The reasons for these effects are rationalized well by using a two-state model analysis. The related molecular orbitals are also plotted to visualize the charge transfer characters. In addition, the averaged TPA spectrum is obtained by calculating the probabilities of various hydrogen bond complexes. Our research could provide a good insight into the design of two-photon materials by making use of hydrogen bond networks.
-
Table I. OPA wavelength λ op and oscillator strength f op of the molecules in water solvent.
Molecule λop/nm fop Complex λop/nm fop TPC 377 0.76 12 369 0.91 1 385 0.82 13 368 0.92 2 384 0.82 14 377 0.86 3 391 0.88 15 396 0.93 4 390 0.88 16 398 0.71 5 388 0.72 17 376 0.78 6 388 0.73 18 400 0.87 7 361 0.81 19 377 0.95 8 368 0.81 20 404 0.78 9 396 0.80 21 375 0.89 10 394 0.78 22 384 0.93 11 394 0.80 23 406 0.85 Table II. TPA wavelengths λtp and cross sections σ of the lowest absorption state of TPC and the HB complexes. The λ0 and σ0 are the TPA wavelength and the cross section obtained for TPC.
Molecule λtp/nm λtp/λ0 σ/GM σ/σ0 Complex λtp/nm λtp/λ0 σ/GM σ/σ0 TPC 770 1 133 1 12 756 0.98 60 0.45 1 790 1.03 111 0.83 13 756 0.98 53 0.40 2 788 1.02 103 0.77 14 770 1.00 82 0.62 3 816 1.06 105 0.79 15 824 1.07 74 0.56 4 814 1.06 116 0.87 16 816 1.06 197 1.48 5 793 1.03 163 1.23 17 763 0.99 122 0.92 6 793 1.03 161 1.21 18 830 1.08 117 0.88 7 732 0.95 44 0.33 19 775 1.01 40 0.30 8 749 0.97 97 0.73 20 836 1.09 172 1.29 9 819 1.06 160 1.20 21 766 0.99 67 0.50 10 816 1.06 153 1.15 22 788 1.02 61 0.46 11 814 1.06 151 1.14 23 844 1.10 129 0.97 Table III. Two-state model analysis parameters of TPC and some HB complexes.
Complex μ0 f/a.u. ∆μ/a.u. θ/(°) ω/a.u. δ2SM/(103a.u.) TPC 3.068 5.707 169.25 0.121 65.64 1 3.225 5.296 167.60 0.118 64.54 3 3.363 4.778 164.96 0.117 58.06 6 3.062 6.263 172.78 0.118 84.31 7 3.179 3.156 82.33 0.126 6.96 9 3.238 5.854 171.73 0.115 85.51 12 3.320 3.573 152.17 0.123 25.25 16 3.046 6.591 175.63 0.115 97.88 -
[1] W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990). doi: 10.1126/science.2321027 [2] S. Yao and K. D. Belfield, Eur. J. Org. Chem. 2012, 3199 (2012). doi: 10.1002/ejoc.201200281 [3] D. Kim, H. G. Ryu, and K. H. Ahn, Org. Biomol. Chem. 12, 4550 (2014). doi: 10.1039/C4OB00431K [4] H. M. Kim and B. R. Cho, Chem. Rev. 115, 5014 (2015). doi: 10.1021/cr5004425 [5] M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem. Int. Ed. 48, 3244 (2009). doi: 10.1002/anie.200805257 [6] H. M. Kim and B. R. Cho, Chem. Commun. 153 (2009). doi: 10.1039/b813280a [7] J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, Chem. Soc. Rev. 40, 3483 (2011). doi: 10.1039/c0cs00224k [8] R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam, and B. Z. Tang, Chem. Soc. Rev. 44, 4228 (2015). doi: 10.1039/C4CS00325J [9] X. Mu, H. Zong, L. Zhu, and M. Sun, J. Phys. Chem. C 124, 2319 (2020). doi: 10.1021/acs.jpcc.9b10086 [10] X. L. Hao, Z. J. Guo, C. Zhang, and A. M. Ren, Phys. Chem. Chem. Phys. 21, 281 (2019). doi: 10.1039/C8CP06050A [11] D. Wang, A. M. Ren, L. Y. Zou, J. F. Guo, and S. Huang, J. Photochem. Photobiol. A Chem. 341, 20 (2017). doi: 10.1016/j.jphotochem.2017.03.024 [12] Y. J. Zhang, Q. Y. Zhang, H. J. Ding, X. N. Song, and C. K. Wang, Chin. Phys. B 24, 023301 (2015). doi: 10.1088/1674-1056/24/2/023301 [13] Y. Zhang and W. Hu, Sensors 18, 4407 (2018). doi: 10.3390/s18124407 [14] Z. Liu, P. Shao, Z. Huang, B. Liu, T. Chen, and J. Qin, Chem. Commun. 2260 (2008). doi: 10.1039/b718147g [15] S. Pascal, S. Denis-Quanquin, F. Appaix, A. Duperray, A. Grichine, B. Le Guennic, D. Jacquemin, J. Cuny, S. H. Chi, J. W. Perry, B. van der Sanden, C. Monnereau, C. Andraud, and O. Maury, Chem. Sci. 8, 381 (2017). doi: 10.1039/C6SC02488B [16] M. Y. Zhang, J. Y. Wang, C. S. Lin, and W. D. Cheng, J. Phys. Chem. B 115, 10750 (2011). doi: 10.1021/jp203977m [17] Y. Zhou, X. Wang, C. Tan, and C. Wang, J. Phys. Chem. A 124, 520 (2020). doi: 10.1021/acs.jpca.9b09017 [18] S. L. Bondarev, T. F. Raichenok, S. A. Tikhomirov, N. G. Kozlov, T. V. Mikhailova, and A. I. Ivanov, J. Phys. Chem. B 125, 8117 (2021). doi: 10.1021/acs.jpcb.1c03745 [19] K. Mendanha, R. C. Prado, L. B. A. Oliveira, and G. Colherinhas, Chem. Phys. Lett. 779, 138876 (2021). doi: 10.1016/j.cplett.2021.138876 [20] K. Liu, Y. Wang, Y. Tu, H. Ågren, and Y. Luo. J. Phys. Chem. B 112, 4387 (2008). [21] Y. Şimşek and A. Brown, J. Phys. Chem. B 122, 5738 (2018). doi: 10.1021/acs.jpcb.8b00885 [22] Y. Tu, Y. Luo, and H. Ågren, J. Phys. Chem. B 109, 16730 (2005). doi: 10.1021/jp051267t [23] T. B. Ren, W. Xu, Q. L. Zhang, X. X. Zhang, S. Y. Wen, H. B. Yi, L. Yuan, and X. B. Zhang, Angew. Chem. Int. Ed. 57, 7473 (2018). doi: 10.1002/anie.201800293 [24] K. Zhao, J. Song, M. Y. Zhu, H. Zhang, and C. K. Wang, Chin. Phys. B 27, 103301 (2018). doi: 10.1088/1674-1056/27/10/103301 [25] D. Spoel, E. Lindahl, and B. Hess, 2014 GROMACS User Manual Version 4.6.7. [26] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004). doi: 10.1002/jcc.20035 [27] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344 [28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C. 01, Wallingford CT: Gaussian Inc. (2016). [29] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885 [30] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I. M. Høyvik, M. F. Iozzi, B. Jansík, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, WIREs Comput. Mol. Sci. 4, 269 (2014). doi: 10.1002/wcms.1172 [31] N. A. Murugan, J. Kongsted, and H. Ågren, J. Chem. Theory Comput. 9, 3660 (2013). doi: 10.1021/ct400357t -