Effects of Hydrogen Bonds on Two-Photon Absorption of Green Fluorescent Protein Chromophore Analogue

Wenying Zhang Minghui Geng Xuexue Ma Ke Zhao

Wenying Zhang, Minghui Geng, Xuexue Ma, Ke Zhao. Effects of Hydrogen Bonds on Two-Photon Absorption of Green Fluorescent Protein Chromophore Analogue[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209139
Citation: Wenying Zhang, Minghui Geng, Xuexue Ma, Ke Zhao. Effects of Hydrogen Bonds on Two-Photon Absorption of Green Fluorescent Protein Chromophore Analogue[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2209139

doi: 10.1063/1674-0068/cjcp2209139

Effects of Hydrogen Bonds on Two-Photon Absorption of Green Fluorescent Protein Chromophore Analogue

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Chemical structure of two-photon chalcone (TPC) and the configuration of 30 TPC in water.

    Figure  2.  Optimized geometries of TPC and various HB complexes.

    Figure  3.  Frontier orbital energy levels of (A) TPC, 1, 3, 6−8, 15, and 16, and (B) 9, 12, 14, 18−20, 22, and 23.

    Figure  4.  (A) TPA spectra of TPC and various HB complexes in water. The average spectrum is calculated using the population of various HB complexes. (B) TPA spectra of the HB complexes with N−H···O (solid line) and N···H−O (dash lines).

    Figure  5.  Molecular orbitals in strong TPA excitations of TPC and HB complexes 1, 6, 7.

    Table  I.   OPA wavelength λ op and oscillator strength f op of the molecules in water solvent.

    Moleculeλop/nmfopComplexλop/nmfop
    TPC3770.76123690.91
    13850.82133680.92
    23840.82143770.86
    33910.88153960.93
    43900.88163980.71
    53880.72173760.78
    63880.73184000.87
    73610.81193770.95
    83680.81204040.78
    93960.80213750.89
    103940.78223840.93
    113940.80234060.85
    下载: 导出CSV

    Table  II.   TPA wavelengths λtp and cross sections σ of the lowest absorption state of TPC and the HB complexes. The λ0 and σ0 are the TPA wavelength and the cross section obtained for TPC.

    Moleculeλtp/nmλtp/λ0σ/GMσ/σ0Complexλtp/nmλtp/λ0σ/GMσ/σ0
    TPC77011331127560.98600.45
    17901.031110.83137560.98530.40
    27881.021030.77147701.00820.62
    38161.061050.79158241.07740.56
    48141.061160.87168161.061971.48
    57931.031631.23177630.991220.92
    67931.031611.21188301.081170.88
    77320.95440.33197751.01400.30
    87490.97970.73208361.091721.29
    98191.061601.20217660.99670.50
    108161.061531.15227881.02610.46
    118141.061511.14238441.101290.97
    下载: 导出CSV

    Table  III.   Two-state model analysis parameters of TPC and some HB complexes.

    Complexμ0f/a.u.μ/a.u.θ/(°)ω/a.u.δ2SM/(103a.u.)
    TPC3.0685.707169.250.12165.64
    13.2255.296167.600.11864.54
    33.3634.778164.960.11758.06
    63.0626.263172.780.11884.31
    73.1793.15682.330.1266.96
    93.2385.854171.730.11585.51
    123.3203.573152.170.12325.25
    163.0466.591175.630.11597.88
    下载: 导出CSV
  • [1] W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990). doi: 10.1126/science.2321027
    [2] S. Yao and K. D. Belfield, Eur. J. Org. Chem. 2012, 3199 (2012). doi: 10.1002/ejoc.201200281
    [3] D. Kim, H. G. Ryu, and K. H. Ahn, Org. Biomol. Chem. 12, 4550 (2014). doi: 10.1039/C4OB00431K
    [4] H. M. Kim and B. R. Cho, Chem. Rev. 115, 5014 (2015). doi: 10.1021/cr5004425
    [5] M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem. Int. Ed. 48, 3244 (2009). doi: 10.1002/anie.200805257
    [6] H. M. Kim and B. R. Cho, Chem. Commun. 153 (2009). doi: 10.1039/b813280a
    [7] J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, Chem. Soc. Rev. 40, 3483 (2011). doi: 10.1039/c0cs00224k
    [8] R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam, and B. Z. Tang, Chem. Soc. Rev. 44, 4228 (2015). doi: 10.1039/C4CS00325J
    [9] X. Mu, H. Zong, L. Zhu, and M. Sun, J. Phys. Chem. C 124, 2319 (2020). doi: 10.1021/acs.jpcc.9b10086
    [10] X. L. Hao, Z. J. Guo, C. Zhang, and A. M. Ren, Phys. Chem. Chem. Phys. 21, 281 (2019). doi: 10.1039/C8CP06050A
    [11] D. Wang, A. M. Ren, L. Y. Zou, J. F. Guo, and S. Huang, J. Photochem. Photobiol. A Chem. 341, 20 (2017). doi: 10.1016/j.jphotochem.2017.03.024
    [12] Y. J. Zhang, Q. Y. Zhang, H. J. Ding, X. N. Song, and C. K. Wang, Chin. Phys. B 24, 023301 (2015). doi: 10.1088/1674-1056/24/2/023301
    [13] Y. Zhang and W. Hu, Sensors 18, 4407 (2018). doi: 10.3390/s18124407
    [14] Z. Liu, P. Shao, Z. Huang, B. Liu, T. Chen, and J. Qin, Chem. Commun. 2260 (2008). doi: 10.1039/b718147g
    [15] S. Pascal, S. Denis-Quanquin, F. Appaix, A. Duperray, A. Grichine, B. Le Guennic, D. Jacquemin, J. Cuny, S. H. Chi, J. W. Perry, B. van der Sanden, C. Monnereau, C. Andraud, and O. Maury, Chem. Sci. 8, 381 (2017). doi: 10.1039/C6SC02488B
    [16] M. Y. Zhang, J. Y. Wang, C. S. Lin, and W. D. Cheng, J. Phys. Chem. B 115, 10750 (2011). doi: 10.1021/jp203977m
    [17] Y. Zhou, X. Wang, C. Tan, and C. Wang, J. Phys. Chem. A 124, 520 (2020). doi: 10.1021/acs.jpca.9b09017
    [18] S. L. Bondarev, T. F. Raichenok, S. A. Tikhomirov, N. G. Kozlov, T. V. Mikhailova, and A. I. Ivanov, J. Phys. Chem. B 125, 8117 (2021). doi: 10.1021/acs.jpcb.1c03745
    [19] K. Mendanha, R. C. Prado, L. B. A. Oliveira, and G. Colherinhas, Chem. Phys. Lett. 779, 138876 (2021). doi: 10.1016/j.cplett.2021.138876
    [20] K. Liu, Y. Wang, Y. Tu, H. Ågren, and Y. Luo. J. Phys. Chem. B 112, 4387 (2008).
    [21] Y. Şimşek and A. Brown, J. Phys. Chem. B 122, 5738 (2018). doi: 10.1021/acs.jpcb.8b00885
    [22] Y. Tu, Y. Luo, and H. Ågren, J. Phys. Chem. B 109, 16730 (2005). doi: 10.1021/jp051267t
    [23] T. B. Ren, W. Xu, Q. L. Zhang, X. X. Zhang, S. Y. Wen, H. B. Yi, L. Yuan, and X. B. Zhang, Angew. Chem. Int. Ed. 57, 7473 (2018). doi: 10.1002/anie.201800293
    [24] K. Zhao, J. Song, M. Y. Zhu, H. Zhang, and C. K. Wang, Chin. Phys. B 27, 103301 (2018). doi: 10.1088/1674-1056/27/10/103301
    [25] D. Spoel, E. Lindahl, and B. Hess, 2014 GROMACS User Manual Version 4.6.7.
    [26] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004). doi: 10.1002/jcc.20035
    [27] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    [28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C. 01, Wallingford CT: Gaussian Inc. (2016).
    [29] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [30] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I. M. Høyvik, M. F. Iozzi, B. Jansík, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, WIREs Comput. Mol. Sci. 4, 269 (2014). doi: 10.1002/wcms.1172
    [31] N. A. Murugan, J. Kongsted, and H. Ågren, J. Chem. Theory Comput. 9, 3660 (2013). doi: 10.1021/ct400357t
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  196
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-10-31
  • 网络出版日期:  2022-11-02

目录

    /

    返回文章
    返回