Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy

Ruixiang Wu Xin Liu Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao

Ruixiang Wu, Xin Liu, Xiaoshuai Wang, Jingjing Luo, Bin Li, Shengzhi Wang, Xiangyang Miao. Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208129
Citation: Ruixiang Wu, Xin Liu, Xiaoshuai Wang, Jingjing Luo, Bin Li, Shengzhi Wang, Xiangyang Miao. Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208129

doi: 10.1063/1674-0068/cjcp2208129

Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  TA spectra of 0.1 g/L CQDs in ethanol: (a) pseudo color TA plot, and (b) TA kinetic traces at different probe wavelengths.

    Figure  2.  PL quenching of CQDs induced by MoS2 concentration variance from 0 mg/L to 100 mg/L in ethanol. Inset: Stern-Volmer plot.

    Figure  3.  Pseudo color TA plot of the CQD-MoS2 composite with differnt MoS2 concentrations of (a) 10 mg/L, (b) 20 mg/L, (c) 50 mg/L, and (d) 100 mg/L in ethanol.

    Figure  4.  TA kinetic trajectories and corresponding fitting curve of CQD-MoS2 composites in ethanol with different MoS2 concentrations at probe wavelengths of (a–e) 490 nm, (f) 500 nm and 530 nm. Red lines in (a-e) are their global fitted curves at 0–40 mg/mL MoS2.

    Figure  5.  Schematic energy levels of CQDs-MoS2 composites. HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital, Abs: absorption, PL1: intrinsic emission, PL2: defect emission. Path 1: LUMO of CQDs transfers energy to MoS2, Path 2: Defect state of CQDs transfers energy to MoS2.

  • [1] R. Xu, B. Huang, T. Wang, Y. Yuan, L. Zhang, C. Lu, Y. Cui, and J. Zhang, Superlattices Microstruct. 111, 665 (2017). doi: 10.1016/j.spmi.2017.07.017
    [2] F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, Science 373, 8541 (2021). doi: 10.1126/science.aaz8541
    [3] N. Nekić, J. Sancho-Parramon, I. Bogdanović-Radović, J. Grenzer, R. Hübner, S. Bernstorff, M. Ivanda, and M. Buljan, Nanophotonics 6, 1055 (2017). doi: 10.1515/nanoph-2016-0133
    [4] S. Armaković and S. J. Armaković, J. Phys. Chem. Solids 98, 156 (2016). doi: 10.1016/j.jpcs.2016.07.006
    [5] Y. Wu, C. Ma, Y. Chen, B. Mortazavi, Z. Lu, X. Zhang, K. Xu, H. Zhang, W. Liu, T. Rabczuk, H. Zhu, Z. Fang, and R. Zhang, Mater. Today Phys. 12, 100164 (2020). doi: 10.1016/j.mtphys.2019.100164
    [6] M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, ACS Photonics 2, 288 (2015). doi: 10.3390/photonics2010288
    [7] D. Ke, L. Z. Sui, D. L. Liu, J. Q. Cui, Y. F. Zhang, Q. Y. Li, S. Y. Li, Y. F. Jiang, A. M. Chen, J. L. Song, and M. X. Jin, Chin. J. Chem. Phys. 31, 277 (2018).
    [8] B. V. Senkovskiy, M. Pfeiffer, S. K. Alavi, A. Bliesener, J. Zhu, S. Michel, A. V. Fedorov, R. German, D. Hertel, D. Haberer, L. Petaccia, F. R. Fischer, K. Meerholz, P. H. M. van Loosdrecht, K. Lindfors, and A. Gruneis, Nano Lett. 17, 4029 (2017). doi: 10.1021/acs.nanolett.7b00147
    [9] B. Ullrich, H. Xi, and J. S. Wang, Appl. Phys. Lett. 108, 083110 (2016).
    [10] I. Y. Goryacheva, A. V. Sapelkin, and G. B. Sukhorukov, Trends Anal. Chem. 90, 27 (2017). doi: 10.1016/j.trac.2017.02.012
    [11] M. J. Molaei, Sol. Energy 196, 549 (2020). doi: 10.1016/j.solener.2019.12.036
    [12] V. A. Öberg, X. Zhang, M. B. Johansson, and E. M. J. Johansson, ChemNanoMat 4, 1223 (2018). doi: 10.1002/cnma.201800263
    [13] Y. Yang, D. Li, C. Li, Y. Liu, and K. Jiang, J. Hazard. Mater. 341, 93 (2018). doi: 10.1016/j.jhazmat.2017.07.052
    [14] L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, J. Phys. Chem. Lett. 8, 3371 (2017). doi: 10.1021/acs.jpclett.7b00885
    [15] C. Y. Han, H. S. Kim, and H. Yang, Materials 13, 897 (2020). doi: 10.3390/ma13040897
    [16] H. Wu, Z. Kang, Z. Zhang, Z. Zhang, H. Si, Q. Liao, S. Zhang, J. Wu, X. Zhang, and Y. Zhang, Adv. Funct. Mater. 28, 1802015 (2018). doi: 10.1002/adfm.201802015
    [17] F. I. Alzakia and S. C. Tan, Adv. Sci. 8, 2003864 (2021). doi: 10.1002/advs.202003864
    [18] Y. Huang, H. Zang, J. S. Chen, E. A. Sutter, P. W. Sutter, C. Y. Nam, and M. Cotlet, Appl. Phys. Lett. 108, 123502 (2016). doi: 10.1063/1.4944781
    [19] T. Bai, B. Yang, J. Chen, D. Zheng, Z. Tang, X. Wang, Y. Zhao, R. Lu, and K. Han, Adv. Mater. 33, 2007215 (2021). doi: 10.1002/adma.202007215
    [20] B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, and K. Han, Adv. Mater. 29, 1703758 (2017). doi: 10.1002/adma.201703758
    [21] I. Vasilescu, S. A. V. Eremia, M. Kusko, A. Radoi, E. Vasile, and G. L. Radu, Biosens. Bioelectron. 15, 30337 (2016).
    [22] S. Mansouri Majd, F. Ghasemi, A. Salimi, and T. K. Sham, ACS Appl. Electron. Mater. 2, 635 (2020). doi: 10.1021/acsaelm.9b00632
    [23] Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, Adv. Mater. 27, 5235 (2015). doi: 10.1002/adma.201501888
    [24] J. Shi, J. Lyu, F. Tian, and M. Yang, Biosens. Bioelectron. 93, 182 (2017).
    [25] D. Prasai, A. R. Klots, A. K. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Nano Lett. 15, 4374 (2015). doi: 10.1021/acs.nanolett.5b00514
    [26] W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Nanotechnology 27, 505204 (2016). doi: 10.1088/0957-4484/27/50/505204
    [27] R. Wu, X. Guo, J. Luo, and X. Miao, J. Lumin. 227, 117602 (2020). doi: 10.1016/j.jlumin.2020.117602
    [28] R. Wu, X. Guo, J. Luo, X. Miao, and J. Zhang, J. Phys. Chem. C 124, 25038 (2020). doi: 10.1021/acs.jpcc.0c06242
    [29] R. Wu, X. Wang, J. Luo, X. Liu, B. Li, S. Wang, L. Y. Cheng, and X. Miao, J. Phys. Chem. C 126, 1558 (2022).
    [30] R. Das, R. Bandyopadhyay, and P. Pramanik, Mater. Today Chem. 8, 96 (2018). doi: 10.1016/j.mtchem.2018.03.003
    [31] A. S. Rasal, S. Yadav, A. Yadav, A. A. Kashale, S. T. Manjunatha, A. Altaee, and J. Y. Chang, ACS Appl. Nano Mater. 4, 6515 (2021). doi: 10.1021/acsanm.1c01372
    [32] H. Gao, Q. Xu, J. Wang, C. Ning, Y. Liu, Y. Xie, and R. Lu, J. Phys. Chem. Lett. 13, 258 (2022). doi: 10.1021/acs.jpclett.1c03834
    [33] K. Wei, L. Zhang, S. L. Jiang, and Q. Zhang, Chin. J. Chem. Phys. 32, 643 (2019).
    [34] R. Wu, R. Chen, H. Zhou, Y. Qin, G. Zhang, C. Qin, Y. Gao, Y. Gao, L. Xiao, and S. Jia, Appl. Phys. Lett. 112, 053101 (2018). doi: 10.1063/1.5005157
    [35] X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, Nanoscale 6, 300 (2014). doi: 10.1039/C3NR04319C
    [36] C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, J. Photochem. Photobiol. C 13, 1 (2012). doi: 10.1016/j.jphotochemrev.2011.10.002
    [37] Q. Fang, Y. Dong, Y. Chen, C. H. Lu, Y. Chi, H. H. Yang, and T. Yu, Carbon 118, 319 (2017). doi: 10.1016/j.carbon.2017.03.061
    [38] W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, Carbon 109, 264 (2016). doi: 10.1016/j.carbon.2016.08.016
    [39] L. Zhang, J. Liu, H. Jiang, H. Gu, and S. Liu, Chin. Opt. Lett. 20, 100002 (2022). doi: 10.3788/COL202220.100002
    [40] R. Wu, J. Luo, X. Guo, X. Wang, Z. Ma, B. Li, L. Y. Cheng, and X. Miao, Chem. Phys. Lett. 781, 138960 (2021). doi: 10.1016/j.cplett.2021.138960
    [41] W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, Small 9, 3031 (2013). doi: 10.1002/smll.201202855
  • 加载中
图(5)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  197
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-27
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-10-01

目录

    /

    返回文章
    返回