Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets

Yao-Yuan Huo Jun Jiang

Yao-Yuan Huo, Jun Jiang. Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208128
Citation: Yao-Yuan Huo, Jun Jiang. Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2208128

doi: 10.1063/1674-0068/cjcp2208128

Transferring Graph Neural Network Models for Predicting Bond Dissociation Energy between Datasets

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  Distributions of three datasets including MG, BDE-db, and ZINC.

    (A) Counts of heavy atoms in molecules. (B) BDEs of bonds.

    Figure  2.  Bond types compositions in three datasets.

    Figure  3.  Structure of input data for a molecule.

    Figure  4.  The processing structure of a message passing layer in GNN.

    Figure  5.  Illustration of GNN model structure. (A) A message passing layer. (B) Process of the whole network.

    Figure  6.  Correlation plots of evaluations on test set of the same dataset.

    (A) MG dataset. (B) BDE-db dataset.

    Figure  7.  Correlation plots of evaluations on test set of different datasets.

    (A) Trained on MG dataset and evaluated on BDE-db dataset. (B) Trained on MG dataset and evaluated on ZINC dataset. (C) Trained on BDE-db dataset and evaluated on MG dataset. (D) Trained on BDE-db dataset and evaluated on ZINC dataset. The data points are colorized by category of bond types and elements in the molecule.

    Figure  8.  Comparison of prediction errors of different bonds using different models.

    (A) Evaluation on BDE-db test set. (B) Evaluation on single bonds of CHON molecules of MG test set. (C) Evaluation on single bonds of CHON molecules of ZINC dataset. Bond types are ordered by occurrence counts in test set.

    Figure  9.  BDEs of N–N bonds in diazo group acquired with GNN prediction and DFT calculation.

    (A) MG GNN model and ZINC dataset. (B) MG GNN model and MG dataset.

    Figure  10.  Typical bonds with the highest GNN predicted BDE. (A) MG model on BDE-db dataset. (B) MG model on single bonds of MG dataset.

  • [1] J. Wu and X. Xu, J. Chem. Phys. 127, 214105 (2007). doi: 10.1063/1.2800018
    [2] J. Wu, Y. Zhou, and X. Xu, Int. J. Quantum Chem. 115, 1021 (2015). doi: 10.1002/qua.24919
    [3] S. Urata, A. Takada, T. Uchimaru, A. K. Chandra, and A. Sekiya, J. Fluorine Chem. 116, 163 (2002). doi: 10.1016/S0022-1139(02)00128-8
    [4] X. Qu, D. A. R. S. Latino, and J. Aires-de-Sousa, J. Cheminformatics 5, 34 (2013). doi: 10.1186/1758-2946-5-34
    [5] B. Maryasin, P. Marquetand, and N. Maulide, Angew. Chem, Int. Ed. 57, 6978 (2018). doi: 10.1002/anie.201803562
    [6] M. Szwarc, Chem. Rev. 47, 75 (1950). doi: 10.1021/cr60146a002
    [7] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [8] F. Scarselli, M. Gori, and A. C. Tsoi, IEEE Trans. Neural Networks 20, 61 (2009). doi: 10.1109/TNN.2008.2005605
    [9] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, Relational Inductive Biases, Deep Learning, and Graph Networks. arXiv preprint (2018), arXiv: 1806.01261.
    [10] P. C. St. John, Y. Guan, Y. Kim, S. Kim, and R. S. Paton, Nat. Commun. 11, 2328 (2020). doi: 10.1038/s41467-020-16201-z
    [11] M. Wen, S. M. Blau, E. W. C. Spotte-Smith, S. Dwaraknath, and K. A. Persson, Chem. Sci. 12, 1858 (2021). doi: 10.1039/D0SC05251E
    [12] Y. Kim, Y. Jeong, J. Kim, E. K. Lee, W. J. Kim, and I. S. Choi, Chem. Asian J. 17, e202200269 (2022). doi: 10.1002/asia.202200269
    [13] C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green, R. Barzilay, and K. F. Jensen, Chem. Sci. 10, 370 (2019). doi: 10.1039/C8SC04228D
    [14] E. Mansimov, O. Mahmood, S. Kang, and K. Cho, Sci. Rep. 9, 20381 (2019). doi: 10.1038/s41598-019-56773-5
    [15] D. Chen, K. Gao, D. D. Nguyen, X. Chen, Y. Jiang, G. W. Wei, and F. Pan, Nat. Commun. 12, 3521 (2021). doi: 10.1038/s41467-021-23720-w
    [16] M. Dolg, Energy-Consistent Pseudopotentials of the Stuttgart/Cologne Group.
    [17] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    [18] T. Lu and F. Chen, J. Mol. Model. 19, 5387 (2013). doi: 10.1007/s00894-013-2034-2
    [19] P. St. John, Y. Guan, Y. Kim, and S. Kim, Bde-Db: A Collection of 290 664 Homolytic Bond Dissociation Enthalpies for Small Organic Molecules, Figshare (2019).
    [20] X. Gonze, P. Ghosez, and R. Godby, Phys. Rev. Lett. 74, 4035 (1995). doi: 10.1103/PhysRevLett.74.4035
  • 加载中
图(10)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  81
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-04-24

目录

    /

    返回文章
    返回