First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)

Shiyan Cao Sulei Hu Wei-Xue Li

Shiyan Cao, Sulei Hu, Wei-Xue Li. First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207111
Citation: Shiyan Cao, Sulei Hu, Wei-Xue Li. First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207111

doi: 10.1063/1674-0068/cjcp2207111

First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)

More Information
    • 关键词:
    •  
  • Figure  1.  Formation energies of metal atoms or complexes on the pristine surface under (a) CO and (b) H2O environments (OH).

    Figure  2.  The reactant adsorption energy of different monomers on the pristine surface. For a given metal-reactant combination, the corresponding adsorption energy is determined by the lower value between that of MX and MX2.

    Figure  3.  Formation energies of metal atoms or complexes on the bridging oxygen vacancy of TiO2(110) surface under (a) CO, and (b) H2O (OH). (c) Heatmap of the formation energy difference between the pristine and defective surface. For the formation energy difference, red or blue blocks represent that monomers have lower formation energy on the pristine or defective surface; grey blocks represent that the monomer detaches from the surface during structure relaxation.

    Figure  4.  Temperature, pressure, and particle size effect on the disintegration free energy. (a) Contour plot of disintegration free energy of 4 nm Ni particles versus temperature and CO pressure. (b) Disintegration free energy of Ni NPs versus the particle size. The dashed line represents the energy of the bulk Ni.

    Figure  5.  Disintegration free energy of different surface monomers on rutile (110). The lower energy is chosen for monomers between MX and MX2 (X=CO and OH). Solid and hollow symbols represent the energies on pristine and defective surfaces. The temperature, pressure, and particle size are set to 400 K, 0.1 bar, and 4 nm, respectively.

  • [1] H. Goksu, N. Zengin, H. Burhan, K. Cellat, and F. Sen, Sci. Rep. 10, 8043 (2020). doi: 10.1038/s41598-020-64988-0
    [2] A. Beniya and S. Higashi, Nat. Catal. 2, 590 (2019). doi: 10.1038/s41929-019-0282-y
    [3] J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, and T. F. Jaramillo, Nat. Energy 1, 16053 (2016). doi: 10.1038/nenergy.2016.53
    [4] J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans, and M. Perez, Angew. Chem. Int. Ed. 46, 1329 (2007). doi: 10.1002/anie.200603931
    [5] S. Hu and W. X. Li, Science 374, 1360 (2021). doi: 10.1126/science.abi9828
    [6] W. Yuan, D. Zhang, Y. Ou, K. Fang, B. Zhu, H. Yang, T. W. Hansen, J. B. Wagner, Z. Zhang, Y. Gao, and Y. Wang, Angew. Chem. Int. Ed. Engl. 57, 16827 (2018). doi: 10.1002/anie.201811933
    [7] G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha and U. Diebold, Nat. Mater. 12, 724 (2013). doi: 10.1038/nmat3667
    [8] L. Luo, M. H. Engelhard, Y. Shao, and C. Wang, ACS Catal. 7, 7658 (2017). doi: 10.1021/acscatal.7b02861
    [9] M. A. van Spronsen, J. W. M. Frenken and I. M. N. Groot, Nat. Commun. 8, 429 (2017). doi: 10.1038/s41467-017-00643-z
    [10] S. Cao, X. Chai, S. Hu, nd W. X. Li, J. Phys. Chem. C 126, 8056 (2022). doi: 10.1021/acs.jpcc.2c00612
    [11] S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, and Y. Li, Nat. Nanotechnol. 13, 856 (2018). doi: 10.1038/s41565-018-0197-9
    [12] E. D. Goodman, A. C. Johnston-Peck, E. M. Dietze, C. J. Wrasman, A. S. Hoffman, F. Abild-Pedersen, S. R. Bare, P. N. Plessow, and M. Cargnello, Nat. Catal. 2, 748 (2019). doi: 10.1038/s41929-019-0328-1
    [13] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem. 3, 634 (2011). doi: 10.1038/nchem.1095
    [14] L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, and Yong Wang, Science 358, 1419 (2017). doi: 10.1126/science.aao2109
    [15] J. H. Fu, J. H. Dong, R. Si, K. J. Sun, J. Y. Zhang, M. R. Li, N. N. Yu, B. S. Zhang, M. G. Humphrey, Q. Fu, and J. Huang, ACS Catal. 11, 1952 (2021). doi: 10.1021/acscatal.0c05599
    [16] J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, C. Franchini, and G. S. Parkinson, Science 371, 375 (2021). doi: 10.1126/science.abe5757
    [17] X. He, Q. He, Y. Deng, M. Peng, H. Chen, Y. Zhang, S. Yao, M. Zhang, D. Xiao, D. Ma, B. Ge, and H. Ji, Nat. Commun. 10, 3663 (2019). doi: 10.1038/s41467-019-11619-6
    [18] H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, and T. Zhang, Nat. Commun. 10, 4585 (2019). doi: 10.1038/s41467-019-12510-0
    [19] L. Lin, J. Liu, X. Liu, Z. Gao, N. Rui, S. Yao, F. Zhang, M. Wang, C. Liu, L. Han, F. Yang, S. Zhang, X. Wen, S. D. Senanayake, Y. Wu, X. Li, J. A. Rodriguez, and D. Ma, Nat. Commun. 12, 6978 (2021). doi: 10.1038/s41467-021-27116-8
    [20] Y. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, J. Li, and P. Sautet, Nat. Commun. 10, 4488 (2019). doi: 10.1038/s41467-019-12461-6
    [21] Y. Q. Su, Y. Wang, J. X. Liu, I. A. W. Filot, K. Alexopoulos, L. Zhang, V. Muravev, B. Zijlstra, D. G. Vlachos, and E. J. M. Hensen, ACS Catal. 9, 3289 (2019). doi: 10.1021/acscatal.9b00252
    [22] R. Ouyang, J. X. Liu, and W. X. Li, J. Am. Chem. Soc. 135, 1760 (2013). doi: 10.1021/ja3087054
    [23] J. C. Liu, Y. G. Wang and J. Li, J. Am. Chem. Soc. 139, 6190 (2017). doi: 10.1021/jacs.7b01602
    [24] F. Wang, J. Ma, S. Xin, Q. Wang, J. Xu, C. Zhang, H. He, and X. C. Zeng, Nat. Commun. 11, 529 (2020). doi: 10.1038/s41467-019-13937-1
    [25] M. Moliner, J. E. Gabay, C. E. Kliewer, R. T. Carr, J. Guzman, G. L. Casty, P. Serna, and A. Corma, J. Am. Chem. Soc. 138, 15743 (2016). doi: 10.1021/jacs.6b10169
    [26] R. Li, X. Xu, B. Zhu, X. Y. Li, Y. Ning, R. Mu, P. Du, M. Li, H. Wang, J. Liang, Y. Chen, Y. Gao, B. Yang, Q. Fu, and X. Bao, Nat. Commun. 12, 1406 (2021). doi: 10.1038/s41467-021-21552-2
    [27] K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren, A. F. Lee, Y. Su, X. Pan, J. Zhang, Z. Chen, J. Yang, X. Liu, T. Zhou, W. Xi, J. Luo, C. Zeng, H. Matsumoto, W. Liu, Q. Jiang, K. Wilson, A. Wang, B. Qiao, W. Li, and T. Zhang, Nat. Commun. 11, 1263 (2020). doi: 10.1038/s41467-020-14984-9
    [28] R. Lang, W. Xi, J. C. Liu, Y. T. Cui, T. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, J. Lin, S. Miao, X. Liu, A. Wang, X. Wang, J. Luo, B. Qiao, J. Li, and T. Zhang, Nat. Commun. 10, 234 (2019). doi: 10.1038/s41467-018-08136-3
    [29] L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, and P. Christopher, Nat. Mater. 18, 746 (2019). doi: 10.1038/s41563-019-0349-9
    [30] H. B. Zhang, G. G. Liu, L. Shi, and J. H. Ye, Adv. Energy Mater. 8, 1701343 (2018). doi: 10.1002/aenm.201701343
    [31] Y. Yao, S. Hu, W. Chen, Z. Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. X. Li, P. Strasser, Y. Wu and Y. Li, Nat. Catal. 2, 304 (2019). doi: 10.1038/s41929-019-0246-2
    [32] K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y. R. Lu, T. S. Chan, F. M. F. de Groot, and Y. Tan, Nat. Commun. 12, 1687 (2021). doi: 10.1038/s41467-021-21956-0
    [33] X. Li, H. Rong, J. Zhang, D. Wang, and Y. Li, Nano Res. 13, 1842 (2020). doi: 10.1007/s12274-020-2755-3
    [34] G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993). doi: 10.1103/PhysRevB.47.558
    [35] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [37] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987). doi: 10.1021/ja00246a021
    [38] C. Kittel, Introduction to Solid State Physics, 8th Edn., Hoboken, NJ: John Wiley & Sons, (2005).
    [39] S. Hu and W. X. Li, ChemNanoMat 4, 510 (2018). doi: 10.1002/cnma.201800052
    [40] N. Humphrey, S. Bac, and S. Mallikarjun Sharada, J. Chem. Phys. 154, 234709 (2021). doi: 10.1063/5.0054991
    [41] J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, and Y. Li, Adv. Mater. 30, 1705369 (2018). doi: 10.1002/adma.201705369
    [42] D. Pillay, Y. Wang, and G. S. Hwang, Korean J. Chem. Engineer. 21, 537 (2004). doi: 10.1007/BF02705445
    [43] A. Hjorth Larsen, J. Jorgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys. Condens. Matter. 29, 273002 (2017). doi: 10.1088/1361-648X/aa680e
    [44] K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003). doi: 10.1103/PhysRevB.68.045407
    [45] B. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh, L. W. Wang, G. A. Somorjai, and M. Salmeron, Science 351, 475 (2016). doi: 10.1126/science.aad8868
    [46] A. Berkó and F. Solymosi, J. Catal. 183, 91 (1999). doi: 10.1006/jcat.1998.2368
  • 加载中
图(5)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  229
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 录用日期:  2022-09-01
  • 网络出版日期:  2022-09-03

目录

    /

    返回文章
    返回