First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)
-
Abstract: Revealing the fundamental mechanisms governing reactant-induced disintegration of supported metal nanoparticles and their dependences on the metal component and reactant species is vital for improving the stability of supported metal nanocatalysts and single-atom catalysts. Here we use first-principles-based disintegration thermodynamics to study the CO- and OH-induced disintegration of Ag, Cu, Au, Ni, Pt, Rh, Ru, and Ir nanoparticles into metal-reactant complexes (M(CO)n, M(OH)n, n=1 and 2) on the pristine and bridge oxygen vacancy site of TiO2(110). It was found that CO has a stronger interaction with these considered transition metals compared to OH, resulting in lower formation energy and a larger promotion effect on the disintegration of nanoparticles (NPs). The corresponding reactant adsorption energy shows a linear dependence on the metal cohesive energy, and metals with higher cohesive energies tend to have higher atomic stability due to their stronger binding with reactant and support. Further disintegration free energy calculations of NPs into metal-reactant complexes indicate only CO-induced disintegration of Ni, Rh, Ru, and Ir nanoparticles is thermodynamically feasible. These results provide a deeper understanding of reactant-induced disintegration of metal nanoparticles into thermodynamically stable metal single-atom catalysts.
-
Figure 3. Formation energies of metal atoms or complexes on the bridging oxygen vacancy of TiO2(110) surface under (a) CO, and (b) H2O (OH). (c) Heatmap of the formation energy difference between the pristine and defective surface. For the formation energy difference, red or blue blocks represent that monomers have lower formation energy on the pristine or defective surface; grey blocks represent that the monomer detaches from the surface during structure relaxation.
Figure 4. Temperature, pressure, and particle size effect on the disintegration free energy. (a) Contour plot of disintegration free energy of 4 nm Ni particles versus temperature and CO pressure. (b) Disintegration free energy of Ni NPs versus the particle size. The dashed line represents the energy of the bulk Ni.
Figure 5. Disintegration free energy of different surface monomers on rutile (110). The lower energy is chosen for monomers between MX and MX2 (X=CO and OH). Solid and hollow symbols represent the energies on pristine and defective surfaces. The temperature, pressure, and particle size are set to 400 K, 0.1 bar, and 4 nm, respectively.
-
[1] H. Goksu, N. Zengin, H. Burhan, K. Cellat, and F. Sen, Sci. Rep. 10, 8043 (2020). doi: 10.1038/s41598-020-64988-0 [2] A. Beniya and S. Higashi, Nat. Catal. 2, 590 (2019). doi: 10.1038/s41929-019-0282-y [3] J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, and T. F. Jaramillo, Nat. Energy 1, 16053 (2016). doi: 10.1038/nenergy.2016.53 [4] J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans, and M. Perez, Angew. Chem. Int. Ed. 46, 1329 (2007). doi: 10.1002/anie.200603931 [5] S. Hu and W. X. Li, Science 374, 1360 (2021). doi: 10.1126/science.abi9828 [6] W. Yuan, D. Zhang, Y. Ou, K. Fang, B. Zhu, H. Yang, T. W. Hansen, J. B. Wagner, Z. Zhang, Y. Gao, and Y. Wang, Angew. Chem. Int. Ed. Engl. 57, 16827 (2018). doi: 10.1002/anie.201811933 [7] G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha and U. Diebold, Nat. Mater. 12, 724 (2013). doi: 10.1038/nmat3667 [8] L. Luo, M. H. Engelhard, Y. Shao, and C. Wang, ACS Catal. 7, 7658 (2017). doi: 10.1021/acscatal.7b02861 [9] M. A. van Spronsen, J. W. M. Frenken and I. M. N. Groot, Nat. Commun. 8, 429 (2017). doi: 10.1038/s41467-017-00643-z [10] S. Cao, X. Chai, S. Hu, nd W. X. Li, J. Phys. Chem. C 126, 8056 (2022). doi: 10.1021/acs.jpcc.2c00612 [11] S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, and Y. Li, Nat. Nanotechnol. 13, 856 (2018). doi: 10.1038/s41565-018-0197-9 [12] E. D. Goodman, A. C. Johnston-Peck, E. M. Dietze, C. J. Wrasman, A. S. Hoffman, F. Abild-Pedersen, S. R. Bare, P. N. Plessow, and M. Cargnello, Nat. Catal. 2, 748 (2019). doi: 10.1038/s41929-019-0328-1 [13] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem. 3, 634 (2011). doi: 10.1038/nchem.1095 [14] L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, and Yong Wang, Science 358, 1419 (2017). doi: 10.1126/science.aao2109 [15] J. H. Fu, J. H. Dong, R. Si, K. J. Sun, J. Y. Zhang, M. R. Li, N. N. Yu, B. S. Zhang, M. G. Humphrey, Q. Fu, and J. Huang, ACS Catal. 11, 1952 (2021). doi: 10.1021/acscatal.0c05599 [16] J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, C. Franchini, and G. S. Parkinson, Science 371, 375 (2021). doi: 10.1126/science.abe5757 [17] X. He, Q. He, Y. Deng, M. Peng, H. Chen, Y. Zhang, S. Yao, M. Zhang, D. Xiao, D. Ma, B. Ge, and H. Ji, Nat. Commun. 10, 3663 (2019). doi: 10.1038/s41467-019-11619-6 [18] H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, and T. Zhang, Nat. Commun. 10, 4585 (2019). doi: 10.1038/s41467-019-12510-0 [19] L. Lin, J. Liu, X. Liu, Z. Gao, N. Rui, S. Yao, F. Zhang, M. Wang, C. Liu, L. Han, F. Yang, S. Zhang, X. Wen, S. D. Senanayake, Y. Wu, X. Li, J. A. Rodriguez, and D. Ma, Nat. Commun. 12, 6978 (2021). doi: 10.1038/s41467-021-27116-8 [20] Y. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, J. Li, and P. Sautet, Nat. Commun. 10, 4488 (2019). doi: 10.1038/s41467-019-12461-6 [21] Y. Q. Su, Y. Wang, J. X. Liu, I. A. W. Filot, K. Alexopoulos, L. Zhang, V. Muravev, B. Zijlstra, D. G. Vlachos, and E. J. M. Hensen, ACS Catal. 9, 3289 (2019). doi: 10.1021/acscatal.9b00252 [22] R. Ouyang, J. X. Liu, and W. X. Li, J. Am. Chem. Soc. 135, 1760 (2013). doi: 10.1021/ja3087054 [23] J. C. Liu, Y. G. Wang and J. Li, J. Am. Chem. Soc. 139, 6190 (2017). doi: 10.1021/jacs.7b01602 [24] F. Wang, J. Ma, S. Xin, Q. Wang, J. Xu, C. Zhang, H. He, and X. C. Zeng, Nat. Commun. 11, 529 (2020). doi: 10.1038/s41467-019-13937-1 [25] M. Moliner, J. E. Gabay, C. E. Kliewer, R. T. Carr, J. Guzman, G. L. Casty, P. Serna, and A. Corma, J. Am. Chem. Soc. 138, 15743 (2016). doi: 10.1021/jacs.6b10169 [26] R. Li, X. Xu, B. Zhu, X. Y. Li, Y. Ning, R. Mu, P. Du, M. Li, H. Wang, J. Liang, Y. Chen, Y. Gao, B. Yang, Q. Fu, and X. Bao, Nat. Commun. 12, 1406 (2021). doi: 10.1038/s41467-021-21552-2 [27] K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren, A. F. Lee, Y. Su, X. Pan, J. Zhang, Z. Chen, J. Yang, X. Liu, T. Zhou, W. Xi, J. Luo, C. Zeng, H. Matsumoto, W. Liu, Q. Jiang, K. Wilson, A. Wang, B. Qiao, W. Li, and T. Zhang, Nat. Commun. 11, 1263 (2020). doi: 10.1038/s41467-020-14984-9 [28] R. Lang, W. Xi, J. C. Liu, Y. T. Cui, T. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, J. Lin, S. Miao, X. Liu, A. Wang, X. Wang, J. Luo, B. Qiao, J. Li, and T. Zhang, Nat. Commun. 10, 234 (2019). doi: 10.1038/s41467-018-08136-3 [29] L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, and P. Christopher, Nat. Mater. 18, 746 (2019). doi: 10.1038/s41563-019-0349-9 [30] H. B. Zhang, G. G. Liu, L. Shi, and J. H. Ye, Adv. Energy Mater. 8, 1701343 (2018). doi: 10.1002/aenm.201701343 [31] Y. Yao, S. Hu, W. Chen, Z. Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. X. Li, P. Strasser, Y. Wu and Y. Li, Nat. Catal. 2, 304 (2019). doi: 10.1038/s41929-019-0246-2 [32] K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y. R. Lu, T. S. Chan, F. M. F. de Groot, and Y. Tan, Nat. Commun. 12, 1687 (2021). doi: 10.1038/s41467-021-21956-0 [33] X. Li, H. Rong, J. Zhang, D. Wang, and Y. Li, Nano Res. 13, 1842 (2020). doi: 10.1007/s12274-020-2755-3 [34] G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993). doi: 10.1103/PhysRevB.47.558 [35] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865 [37] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987). doi: 10.1021/ja00246a021 [38] C. Kittel, Introduction to Solid State Physics, 8th Edn., Hoboken, NJ: John Wiley & Sons, (2005). [39] S. Hu and W. X. Li, ChemNanoMat 4, 510 (2018). doi: 10.1002/cnma.201800052 [40] N. Humphrey, S. Bac, and S. Mallikarjun Sharada, J. Chem. Phys. 154, 234709 (2021). doi: 10.1063/5.0054991 [41] J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, and Y. Li, Adv. Mater. 30, 1705369 (2018). doi: 10.1002/adma.201705369 [42] D. Pillay, Y. Wang, and G. S. Hwang, Korean J. Chem. Engineer. 21, 537 (2004). doi: 10.1007/BF02705445 [43] A. Hjorth Larsen, J. Jorgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys. Condens. Matter. 29, 273002 (2017). doi: 10.1088/1361-648X/aa680e [44] K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003). doi: 10.1103/PhysRevB.68.045407 [45] B. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh, L. W. Wang, G. A. Somorjai, and M. Salmeron, Science 351, 475 (2016). doi: 10.1126/science.aad8868 [46] A. Berkó and F. Solymosi, J. Catal. 183, 91 (1999). doi: 10.1006/jcat.1998.2368 -