Understanding the Reactivity of Single Atom Alloys towards the Alkyl CH Bond Activation: A theoretical Study

Congcong Qiao Gang Fu

Congcong Qiao, Gang Fu. Understanding the Reactivity of Single Atom Alloys towards the Alkyl C–H Bond Activation: A theoretical Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207110
Citation: Congcong Qiao, Gang Fu. Understanding the Reactivity of Single Atom Alloys towards the Alkyl CH Bond Activation: A theoretical Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207110

doi: 10.1063/1674-0068/cjcp2207110

Understanding the Reactivity of Single Atom Alloys towards the Alkyl CH Bond Activation: A theoretical Study

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The top view (a) and side view (b) of the SAA model.

    Figure  2.  Geometry of the initial state, transition state, and final state for the first C–H activation of methane.

    Figure  3.  The correlation between the activation barriers (ΔEa) and the d-band center (εd) (a) , ΔEa and reaction energies (ΔErxn) (b) ; ΔE a and H atom adsorption energies (EH) (c) , ΔEa and C atom adsorption energies (EC) (d) . The solid squares represent the SAAs while the hollow squares represent the pure metals.

    Figure  4.  Comparison of the orbital interaction between C-H bond activation and H or C atom adsorption on SAAs/metals.

    Figure  5.  The correlation of the ΔEa of different C–H bonds with EC.

    Table  I.   The electronic structures and reactivity of different SAAs and their parent metals (energy in eV, bond length in Å).

    SurfacesεdΔEadsCH3–H activationΔErxn
    ΔEadC–HdM–CdM–H
    Rh(111)−1.57−0.010.751.5522.2131.6450.29
    Rh1Cu(111)−0.75−0.020.701.6412.2041.6180.43
    Rh1Ag(111)−0.43−0.050.561.6142.2181.6040.37
    Rh1Au(111)−0.55−0.100.661.6672.1711.5950.51
    Ir(111)−2.00−0.010.771.4882.2661.6580.32
    Ir1Cu(111)−0.910.000.501.4972.2681.6390.11
    Ir1Ag(111)−0.52−0.050.331.4322.2661.636−0.03
    Ir1Au(111)−0.70−0.080.311.4772.2421.6160.04
    Ni(111)−1.16−0.020.921.5942.0641.5580.35
    Ni1Cu(111)−0.620.000.821.6472.0641.5220.38
    Ni1Ag(111)−0.35−0.010.851.7072.0211.5140.69
    Ni1Au(111)−0.44−0.020.881.7912.0011.5360.78
    Pd(111)−1.37−0.010.841.5862.1731.6570.35
    Pd1Cu(111)−1.670.001.211.7202.2071.6370.79
    Pd1Ag(111)−1.26−0.031.261.7322.1851.6191.04
    Pd1Au(111)−1.19−0.041.171.7502.1721.6210.95
    Pt(111)−1.75−0.010.701.4892.2211.652−0.07
    Pt1Cu(111)−1.710.001.051.5922.2501.6320.55
    Pt1Ag(111)−1.250.000.991.5502.2371.6220.60
    Pt1Au(111)−1.300.000.731.5792.2081.6150.35
    下载: 导出CSV
  • [1] Y. Wang, P. Hu, J. Yang, Y.-A. Zhu, and D. Chen, Chem. Soc. Rev. 50, 4299 (2021). doi: 10.1039/D0CS01262A
    [2] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, Chem. Rev. 114, 10613 (2014). doi: 10.1021/cr5002436
    [3] J. A. Labinger and J. E. Bercaw, Nature 417, 507 (2002). doi: 10.1038/417507a
    [4] A. E. Shilov and G. B. Shul'pin, Chem. Rev. 97, 2879 (1997). doi: 10.1021/cr9411886
    [5] E. Mcfarland, Science 338, 340 (2012). doi: 10.1126/science.1226840
    [6] S. Chen, C. Pei, G. Sun, Z. J. Zhao, and J. Gong, Acc. Mater. Res. 1, 30 (2020). doi: 10.1021/accountsmr.0c00012
    [7] F. Jiang, L. Zeng, S. Li, G. Liu, S. Wang, and J. Gong, ACS Catal. 5, 438 (2015). doi: 10.1021/cs501279v
    [8] L. Deng, T. Arakawa, T. Ohkubo, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, and T. Tanaka, Ind. Eng. Chem. Res. 56, 7160 (2017).
    [9] H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002). doi: 10.1006/jcat.2002.3579
    [10] D. Balcells, E. Clot, and O. Eisenstein, Chem. Rev. 110, 749 (2010). doi: 10.1021/cr900315k
    [11] J. T. Grant, J. M. Venegas, W. P. Mcdermott, and I. Hermans, Chem. Rev. 118, 2769 (2018). doi: 10.1021/acs.chemrev.7b00236
    [12] J. Weaver, C. Hakanoglu, A. Antony, and A. Asthagiri, Chem. Soc. Rev. 43, 7536 (2014). doi: 10.1039/c3cs60420a
    [13] G. Caeiro, R. H. Carvalho, X. Wang, M. A. N. D. A. Lemos, F. Lemos, M. Guisnet, and F. Ramôa Ribeiro, J. Mol. Catal. A Chem. 255, 131 (2006). doi: 10.1016/j.molcata.2006.03.068
    [14] G. Fu, R. Yuan, H. Wan, and X. Xu, J. Energy Chem. 25, 1045 (2016). doi: 10.1016/j.jechem.2016.10.006
    [15] G. Fu, X. Xu, X. Lu, and H. Wan, J. Am. Chem. Soc. 127, 3989 (2005). doi: 10.1021/ja0441099
    [16] P. Wang, G. Fu, and H. Wan, ACS Catal. 7, 5544 (2017). doi: 10.1021/acscatal.7b01498
    [17] A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, and J. K. Nørskov, Nat. Mater. 16, 225 (2017). doi: 10.1038/nmat4760
    [18] T. Saelee, S. Namuangruk, N. Kungwan, and A. Junkaew, J. Phys. Chem. C 122, 14678 (2018). doi: 10.1021/acs.jpcc.8b03939
    [19] M. L. Yang, Y. A. Zhu, C. Fan, Z. J. Sui, D. Chen, and X. G. Zhou, Phys. Chem. Chem. Phys. 13, 3257 (2011). doi: 10.1039/c0cp00341g
    [20] T. Hannagan Ryan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel, Y. Wang, A. Michaelides, P. Deshlahra, P. Christopher, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Science 372, 1444 (2021). doi: 10.1126/science.abg8389
    [21] G. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, and J. Gong, Nat. Commun. 9, 4454 (2018). doi: 10.1038/s41467-018-06967-8
    [22] M. D. Marcinkowski, A. D. Jewell, M. Stamatakis, M. B. Boucher, E. A. Lewis, C. J. Murphy, G. Kyriakou, and E. C. H. Sykes, Nat. Mater. 12, 523 (2013). doi: 10.1038/nmat3620
    [23] M. D. Marcinkowski, M. T. Darby, J. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Nat. Chem. 10, 325 (2018). doi: 10.1038/nchem.2915
    [24] Q. Fu and Y. Luo, ACS Catal. 3, 1245 (2013). doi: 10.1021/cs400267x
    [25] R. Réocreux and M. Stamatakis, Acc. Chem. Res. 55, 87 (2022). doi: 10.1021/acs.accounts.1c00611
    [26] M. T. Greiner, T. E. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, and R. Schlögl, Nat. Chem. 10, 1008 (2018). doi: 10.1038/s41557-018-0125-5
    [27] T. D. Spivey and A. Holewinski, J. Am. Chem. Soc. 143, 11897 (2021). doi: 10.1021/jacs.1c04234
    [28] A. Kokalj, N. Bonini, S. De Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006). doi: 10.1021/ja060114w
    [29] H. Thirumalai and J. R. Kitchin, Top. Catal. 61, 462 (2018). doi: 10.1007/s11244-018-0899-0
    [30] Z. K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao, and S. V. Levchenko, Nature Commun. 12, 1833 (2021). doi: 10.1038/s41467-021-22048-9
    [31] R. A. Van Santen, M. Neurock, and S. G. Shetty, Chem. Rev. 110, 2005 (2010). doi: 10.1021/cr9001808
    [32] V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000). doi: 10.1006/jcat.1999.2724
    [33] F. Mehmood, R. B. Rankin, J. Greeley, and L. A. Curtiss, Phys. Chem. Chem. Phys. 14, 8644 (2012). doi: 10.1039/c2cp00052k
    [34] M. T. Darby, R. Réocreux, E. C. H. Sykes, A. Michaelides, and M. Stamatakis, ACS Catal. 8, 5038 (2018). doi: 10.1021/acscatal.8b00881
    [35] M. L. Yang, Y. A. Zhu, X. G. Zhou, Z. J. Sui, and D. Chen, ACS Catal. 2, 1247 (2012). doi: 10.1021/cs300031d
    [36] G. Kresse, J. Non. Cryst. Solids, 192, 222 (1995).
    [37] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [38] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    [39] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [40] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    [41] D. J. Chadi, Phys. Rev. B 16, 1746 (1977). doi: 10.1103/PhysRevB.16.1746
    [42] W. An, X. C. Zeng, and C. H. Turner, J. Chem. Phys. 131, 174702 (2009). doi: 10.1063/1.3254383
    [43] M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87, 2724 (1987). doi: 10.1063/1.453060
    [44] M. B. Lee, Q. Y. Yang, S. L. Tang, and S. T. Ceyer, J. Chem. Phys. 85, 1693 (1986). doi: 10.1063/1.451211
    [45] Y. R. Luo. Comprehensive Handbook of Chemical Bond Energies, 1st Edn., Boca Raton: CRC Press, (2007).
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  166
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-26

目录

    /

    返回文章
    返回