Understanding the Reactivity of Single Atom Alloys towards the Alkyl C–H Bond Activation: A theoretical Study
-
Abstract: Single atom alloys (SAAs), composed of active metal dopants atomically dispersed on the Cu, Ag, or Au host metals, have recently become a ‘rising star’ in single atom catalysis research. SAAs usually display unique catalytic behavior, mainly due to the anomalous electronic structure of isolated active sites, distinguishing from that of the parent metals. As the consequence, there is lack of robust yet reliable descriptor of catalytic properties of SAAs. In this work, we present a systematically theoretical study on the first C–H bond activation of methane, propane and ethylbenzene over 15 SAAs comprising of Rh, Ir, Ni, Pd, and Pt doping Cu(111), Ag(111), and Au(111) surfaces. Our DFT calculations demonstrate that not only the d-band centers but also the H atom adsorption energies could not correlate well with the activation barriers of alkyl C–H bond, while enhanced performance is achieved when using the reaction energy as a descriptor. We find that there existed orbital interaction similarity between C atom adsorption on top site and the transition states of C–H activation because both of them involve not only σ donation with dz2 orbital but also the π back-donation from dxy/dyz orbital(s). As a consequence, the C adsorption energies and C–H bond activation energies are very strongly correlated (R2>0.9), not only for methane but also for propane and ethylbenzene.
-
Key words:
- Single-atom alloy /
- C–H bond activation /
- d-band center /
- Thermochemical descriptor /
- Linear scaling
-
Figure 3. The correlation between the activation barriers (ΔEa) and the d-band center (εd) (a) , ΔEa and reaction energies (ΔErxn) (b) ; ΔE a and H atom adsorption energies (EH) (c) , ΔEa and C atom adsorption energies (EC) (d) . The solid squares represent the SAAs while the hollow squares represent the pure metals.
Table I. The electronic structures and reactivity of different SAAs and their parent metals (energy in eV, bond length in Å).
Surfaces εd ΔEads CH3–H activation ΔErxn ΔEa dC–H dM–C dM–H Rh(111) −1.57 −0.01 0.75 1.552 2.213 1.645 0.29 Rh1Cu(111) −0.75 −0.02 0.70 1.641 2.204 1.618 0.43 Rh1Ag(111) −0.43 −0.05 0.56 1.614 2.218 1.604 0.37 Rh1Au(111) −0.55 −0.10 0.66 1.667 2.171 1.595 0.51 Ir(111) −2.00 −0.01 0.77 1.488 2.266 1.658 0.32 Ir1Cu(111) −0.91 0.00 0.50 1.497 2.268 1.639 0.11 Ir1Ag(111) −0.52 −0.05 0.33 1.432 2.266 1.636 −0.03 Ir1Au(111) −0.70 −0.08 0.31 1.477 2.242 1.616 0.04 Ni(111) −1.16 −0.02 0.92 1.594 2.064 1.558 0.35 Ni1Cu(111) −0.62 0.00 0.82 1.647 2.064 1.522 0.38 Ni1Ag(111) −0.35 −0.01 0.85 1.707 2.021 1.514 0.69 Ni1Au(111) −0.44 −0.02 0.88 1.791 2.001 1.536 0.78 Pd(111) −1.37 −0.01 0.84 1.586 2.173 1.657 0.35 Pd1Cu(111) −1.67 0.00 1.21 1.720 2.207 1.637 0.79 Pd1Ag(111) −1.26 −0.03 1.26 1.732 2.185 1.619 1.04 Pd1Au(111) −1.19 −0.04 1.17 1.750 2.172 1.621 0.95 Pt(111) −1.75 −0.01 0.70 1.489 2.221 1.652 −0.07 Pt1Cu(111) −1.71 0.00 1.05 1.592 2.250 1.632 0.55 Pt1Ag(111) −1.25 0.00 0.99 1.550 2.237 1.622 0.60 Pt1Au(111) −1.30 0.00 0.73 1.579 2.208 1.615 0.35 -
[1] Y. Wang, P. Hu, J. Yang, Y.-A. Zhu, and D. Chen, Chem. Soc. Rev. 50, 4299 (2021). doi: 10.1039/D0CS01262A [2] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, Chem. Rev. 114, 10613 (2014). doi: 10.1021/cr5002436 [3] J. A. Labinger and J. E. Bercaw, Nature 417, 507 (2002). doi: 10.1038/417507a [4] A. E. Shilov and G. B. Shul'pin, Chem. Rev. 97, 2879 (1997). doi: 10.1021/cr9411886 [5] E. Mcfarland, Science 338, 340 (2012). doi: 10.1126/science.1226840 [6] S. Chen, C. Pei, G. Sun, Z. J. Zhao, and J. Gong, Acc. Mater. Res. 1, 30 (2020). doi: 10.1021/accountsmr.0c00012 [7] F. Jiang, L. Zeng, S. Li, G. Liu, S. Wang, and J. Gong, ACS Catal. 5, 438 (2015). doi: 10.1021/cs501279v [8] L. Deng, T. Arakawa, T. Ohkubo, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, and T. Tanaka, Ind. Eng. Chem. Res. 56, 7160 (2017). [9] H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002). doi: 10.1006/jcat.2002.3579 [10] D. Balcells, E. Clot, and O. Eisenstein, Chem. Rev. 110, 749 (2010). doi: 10.1021/cr900315k [11] J. T. Grant, J. M. Venegas, W. P. Mcdermott, and I. Hermans, Chem. Rev. 118, 2769 (2018). doi: 10.1021/acs.chemrev.7b00236 [12] J. Weaver, C. Hakanoglu, A. Antony, and A. Asthagiri, Chem. Soc. Rev. 43, 7536 (2014). doi: 10.1039/c3cs60420a [13] G. Caeiro, R. H. Carvalho, X. Wang, M. A. N. D. A. Lemos, F. Lemos, M. Guisnet, and F. Ramôa Ribeiro, J. Mol. Catal. A Chem. 255, 131 (2006). doi: 10.1016/j.molcata.2006.03.068 [14] G. Fu, R. Yuan, H. Wan, and X. Xu, J. Energy Chem. 25, 1045 (2016). doi: 10.1016/j.jechem.2016.10.006 [15] G. Fu, X. Xu, X. Lu, and H. Wan, J. Am. Chem. Soc. 127, 3989 (2005). doi: 10.1021/ja0441099 [16] P. Wang, G. Fu, and H. Wan, ACS Catal. 7, 5544 (2017). doi: 10.1021/acscatal.7b01498 [17] A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, and J. K. Nørskov, Nat. Mater. 16, 225 (2017). doi: 10.1038/nmat4760 [18] T. Saelee, S. Namuangruk, N. Kungwan, and A. Junkaew, J. Phys. Chem. C 122, 14678 (2018). doi: 10.1021/acs.jpcc.8b03939 [19] M. L. Yang, Y. A. Zhu, C. Fan, Z. J. Sui, D. Chen, and X. G. Zhou, Phys. Chem. Chem. Phys. 13, 3257 (2011). doi: 10.1039/c0cp00341g [20] T. Hannagan Ryan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel, Y. Wang, A. Michaelides, P. Deshlahra, P. Christopher, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Science 372, 1444 (2021). doi: 10.1126/science.abg8389 [21] G. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, and J. Gong, Nat. Commun. 9, 4454 (2018). doi: 10.1038/s41467-018-06967-8 [22] M. D. Marcinkowski, A. D. Jewell, M. Stamatakis, M. B. Boucher, E. A. Lewis, C. J. Murphy, G. Kyriakou, and E. C. H. Sykes, Nat. Mater. 12, 523 (2013). doi: 10.1038/nmat3620 [23] M. D. Marcinkowski, M. T. Darby, J. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Nat. Chem. 10, 325 (2018). doi: 10.1038/nchem.2915 [24] Q. Fu and Y. Luo, ACS Catal. 3, 1245 (2013). doi: 10.1021/cs400267x [25] R. Réocreux and M. Stamatakis, Acc. Chem. Res. 55, 87 (2022). doi: 10.1021/acs.accounts.1c00611 [26] M. T. Greiner, T. E. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, and R. Schlögl, Nat. Chem. 10, 1008 (2018). doi: 10.1038/s41557-018-0125-5 [27] T. D. Spivey and A. Holewinski, J. Am. Chem. Soc. 143, 11897 (2021). doi: 10.1021/jacs.1c04234 [28] A. Kokalj, N. Bonini, S. De Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006). doi: 10.1021/ja060114w [29] H. Thirumalai and J. R. Kitchin, Top. Catal. 61, 462 (2018). doi: 10.1007/s11244-018-0899-0 [30] Z. K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao, and S. V. Levchenko, Nature Commun. 12, 1833 (2021). doi: 10.1038/s41467-021-22048-9 [31] R. A. Van Santen, M. Neurock, and S. G. Shetty, Chem. Rev. 110, 2005 (2010). doi: 10.1021/cr9001808 [32] V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000). doi: 10.1006/jcat.1999.2724 [33] F. Mehmood, R. B. Rankin, J. Greeley, and L. A. Curtiss, Phys. Chem. Chem. Phys. 14, 8644 (2012). doi: 10.1039/c2cp00052k [34] M. T. Darby, R. Réocreux, E. C. H. Sykes, A. Michaelides, and M. Stamatakis, ACS Catal. 8, 5038 (2018). doi: 10.1021/acscatal.8b00881 [35] M. L. Yang, Y. A. Zhu, X. G. Zhou, Z. J. Sui, and D. Chen, ACS Catal. 2, 1247 (2012). doi: 10.1021/cs300031d [36] G. Kresse, J. Non. Cryst. Solids, 192, 222 (1995). [37] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0 [38] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169 [39] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865 [40] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953 [41] D. J. Chadi, Phys. Rev. B 16, 1746 (1977). doi: 10.1103/PhysRevB.16.1746 [42] W. An, X. C. Zeng, and C. H. Turner, J. Chem. Phys. 131, 174702 (2009). doi: 10.1063/1.3254383 [43] M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87, 2724 (1987). doi: 10.1063/1.453060 [44] M. B. Lee, Q. Y. Yang, S. L. Tang, and S. T. Ceyer, J. Chem. Phys. 85, 1693 (1986). doi: 10.1063/1.451211 [45] Y. R. Luo. Comprehensive Handbook of Chemical Bond Energies, 1st Edn., Boca Raton: CRC Press, (2007). -