Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells

Xue Yin Dong-bao Yao Hao-jun Liang

Xue Yin, Dong-bao Yao, Hao-jun Liang. Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207107
Citation: Xue Yin, Dong-bao Yao, Hao-jun Liang. Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2207107

doi: 10.1063/1674-0068/cjcp2207107

Tuning Gene Expression by Hairpin Elements near the Start Codon of mRNA in Mammalian Cells

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  (a) Schematic diagram of the reporter vector expressed in mammalian cells. The HpE is inserted upstream of the ORF of the reporter gene. (b) and (c) Influence of the HpEs in 5′ UTR of mRNAs in gene expression regulation. Normalized relative fluorescence levels are plotted in (b). The histograms EGFP mode fluorescence are present in (c). Error bar means standard deviation for three biological repetitions.

    Figure  2.  Stability of HpE in the 5′ UTR of mRNA tunes gene expression levels in HEK293T cells. (a) Impacts of HpEs with varied free energy in a constant 50% GC content; (b) influence of GC contents of HpEs in the constant free energy. Error bars mean standard deviation for three biological repetitions.

    Figure  3.  Distance between caps and HpEs influences the mRNA translation levels. (a) Illustration of mRNAs containing hairpins with various cap distances away from the cap. (b) Microscopy images of EGFP fluorescence of 37.5% GC content. Normalized gene expression levels of different cap distances: HpEs of the constant (c) 37.5% GC content, and (d) 53% GC content. Error bars mean standard deviation for three biological repetitions.

    Figure  4.  Start codon sequestered within HpEs tune gene expression levels in HEK293T cells. (a) Illustration of mRNAs containing hairpin structures at various stem lengths with the concealed start codon. (b) Relative normalized EGFP fluorescence levels of genes containing different HpEs. Error bars mean standard deviation for three biological repetitions.

    Figure  5.  Influence of uORF sequestered within the HpEs in translation control. (a) Illustration of mRNAs containing uORF and hairpin structures. (b) Relative normalized EGFP fluorescence levels of genes containing uORFs within different structures in the 5′ UTR of the gene. Error bars mean standard deviation for three biological repetitions.

    Table  I.   Parameters of HpEs for mRNA translation control (cap distance: 14 nt).

    HpEsStability/(kcal/mol)Stem length/ntGC content/%
    H1−47.22176.2
    H2−40.01877.8
    H3−34.61675.0
    H4−39.52161.9
    H5−32.31861.1
    H6−34.41770.6
    下载: 导出CSV

    Table  II.   Parameters of HpEs with AUG in the stem (cap distance: 6 nt).

    HpEsStability/ (kcal/mol)Stem length/ntGC content/%
    16AUG–30.11675
    19AUG–36.11968
    22AUG−43.02268
    25AUG−48.72568
    28ATG−57.02875
    下载: 导出CSV
  • [1] S. Grabow, A. J. Kueh, F. Ke, H. K. Vanyai, B. N. Sheikh, M. A. Dengler, W. Chiang, S. Eccles, I. M. Smyth, L. K. Jones, F. J. de Sauvage, M. Scott, L. Whitehead, A. K. Voss, and A. Strasser, Cell Rep. 24, 3285 (2018). doi: 10.1016/j.celrep.2018.08.048
    [2] F. Wei, S. Zhong, Z. Ma, H. Kong, A. Medvec, R. Ahmed, J. F. Gordon, M. Krogsgaard, and L. R. James, Proc. Natl. Acad. Sci. USA 110, E2480 (2013). doi: 10.1073/pnas.1305394110
    [3] H. Bao, Y. Ding, F. Yang, J. Zhang, J. Xie, C. Zhao, K. Du, Y. Zeng, K. Zhao, Z. Li, and Z. Yang, BMC Genom. 23, 346 (2022). doi: 10.1186/s12864-022-08549-x
    [4] Z. T. Ding, Z. Zhang, D. Luo, J. Y. Zhou, J. Zhong, J. Yang, L. Xiao, D. Shu, and H. Tan, Int. J. Mol. Sci. 16, 10301 (2015). doi: 10.3390/ijms160510301
    [5] M. B. Kopniczky, S. J. Moore, and P. S. Freemont, IEEE Trans. Biomed. Circuits Syst. 9, 485 (2015). doi: 10.1109/TBCAS.2015.2451707
    [6] S. Ausländer, D. Ausländer, and M. Fussenegger, Angew Chem. Int. Ed. 56, 6396 (2017). doi: 10.1002/anie.201609229
    [7] M. P. McNerney, D. M. Watstein, and M. P. Styczynski, Metab. Eng. 31, 123 (2015). doi: 10.1016/j.ymben.2015.06.011
    [8] T. Li, B. Liu, M. H. Spalding, D. P. Weeks, and B. Yang, Nat. Biotechnol. 30, 390 (2012). doi: 10.1038/nbt.2199
    [9] H. Ledford, Nature 531, 156 (2016). doi: 10.1038/531156a
    [10] Z. Lu, S. Yang, X. Yuan, Y. Shi, L. Ouyang, S. Jiang, L. Yi, and G. Zhang, Nucleic Acids Res. 47, e40 (2019). doi: 10.1093/nar/gkz072
    [11] J. P. Ferreira, R. W. Peacock, I. E. Lawhorn, and C. L. Wang, Synth. Syst. Biotechnol. 5, 131 (2011). doi: 10.1007/s11693-011-9089-0
    [12] J. Blazeck and H. S. Alper, J. Biotechnol. 8, 46 (2013). doi: 10.1002/biot.201200120
    [13] A. J. Brown, B. Sweeney, D. O. Mainwaring, and D. C. James, Biotechnol. Bioeng. 111, 1638 (2014). doi: 10.1002/bit.25227
    [14] M. He, X. Zhou, Z. Li, X. Yin, W. Han, J. Zhou, X. Sun, X. Liu, D. Yao, and H. Liang, J. Am. Chem. Soc. 144, 12690 (2022). doi: 10.1021/jacs.2c02271
    [15] H. Nakanishi, H. Saito, and K. Itaka, ACS Synthetic Biology. 11, 1077 (2022). doi: 10.1021/acssynbio.1c00567
    [16] L. A. Gilbert, M. H. Larson, L. Morsut, Z. Liu, G. A. Brar, S. E. Torres, N. Stern-Ginossar, O. Brandman, E. H. Whitehead, J. A. Doudna, W. A. Lim, J. S. Weissman, and L. S. Qi, Cell 154, 442 (2013). doi: 10.1016/j.cell.2013.06.044
    [17] S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh, C. Barcena, P. D. Hsu, N. Habib, J. S. Gootenberg, H. Nishimasu, O. Nureki, and F. Zhang, Nature 517, 583 (2015). doi: 10.1038/nature14136
    [18] J. G. Zalatan, M. E. Lee, R. Almeida, L. A. Gilbert, E. H. Whitehead, M. La Russa, J. C. Tsai, J. S. Weissman, J. E. Dueber, L. S. Qi, and W. A. Lim, Cell 160, 339 (2015). doi: 10.1016/j.cell.2014.11.052
    [19] Y. S. Michaels, M. B. Barnkob, H. Barbosa, T. A. Baeumler, M. K. Thompson, V. Andre, H. Colin-York, M. Fritzsche, U. Gileadi, H. M. Sheppard, D. J. H. F. Knapp, T. A. Milne, V. Cerundolo, and T. A. Fulga, Nat. Commun. 10, 818 (2019). doi: 10.1038/s41467-019-08777-y
    [20] S. Matsuura, H. Ono, S. Kawasaki, Y. Kuang, Y. Fujita, and H. Saito, Nat. Commun. 9, 4847 (2018). doi: 10.1038/s41467-018-07181-2
    [21] Y. Yokobayashi, Curr. Opin. Chem. Biol. 52, 72 (2019). doi: 10.1016/j.cbpa.2019.05.018
    [22] S. D. Petersen, J. Zhang, J. S. Lee, T. Jakociunas, L. M. Grav, H. F. Kildegaard, J. D. Keasling, and M. K. Jensen, Nucleic Acids Res. 46, e127 (2018). doi: 10.1093/nar/gky734
    [23] J. P. Ferreira, K. W. Overton, and C. L. Wang, Proc. Natl. Acad. Sci. USA 110, 11284 (2013). doi: 10.1073/pnas.1305590110
    [24] L. Jia, Y. Mao, Q. Ji, D. Dersh, J. W. Yewdell, and S. B. Qian, Nat. Struct. Mol. Biol. 27, 814 (2020). doi: 10.1038/s41594-020-0465-x
    [25] K. Leppek, R. Das, and M. Barna, Nat. Rev. Mol. Cell Biol. 19, 158 (2018). doi: 10.1038/nrm.2017.103
    [26] K. Endo, J. A. Stapleton, K. Hayashi, H. Saito, and T. Inoue, Nucleic Acids Res. 41, e135 (2013). doi: 10.1093/nar/gkt347
    [27] M. Kozak, Proc. Natl. Acad. Sci. USA 83, 2850 (1986). doi: 10.1073/pnas.83.9.2850
    [28] P. Eisenhut, A. Mebrahtu, M. Moradi Barzadd, N. Thalén, G. Klanert, M. Weinguny, A. Sandegren, C. Su, D. Hatton, N. Borth, and J. Rockberg, Nucleic Acids Res. 48, e119 (2020). doi: 10.1093/nar/gkaa847
    [29] J. R. Babendure, J. L. Babendure, J. H. Ding, and R. Y. Tsien, RNA 12, 851 (2006). doi: 10.1261/rna.2309906
    [30] E. Lamping, M. Niimi, and R. D. Cannon, Microb. Cell Fact. 12, 74 (2013). doi: 10.1186/1475-2859-12-74
    [31] T. Weenink, J. van der Hilst, R. M. McKiernan, and T. Ellis, Synth. Biol. 3, ysy019 (2018). doi: 10.1093/synbio/ysy019
    [32] R. J. Jackson, C. U. T. Hellen, and T. V. Pestova, Nat. Rev. Mol. Cell Biol. 11, 113 (2010). doi: 10.1038/nrm2838
    [33] G. Hinnebusch Alan, Microbiol. Mol. Biol. Rev. 75, 434 (2011). doi: 10.1128/MMBR.00008-11
    [34] T. Zhang, A. Wu, Y. Yue, and Y. Zhao, Int. J. Mol. Sci. 21, 6238 (2020). doi: 10.3390/ijms21176238
    [35] E. Calvo Sarah, J. Pagliarini David, and K. Mootha Vamsi, Proc. Natl. Acad. Sci. USA 106, 7507 (2009). doi: 10.1073/pnas.0810916106
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  199
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 录用日期:  2022-09-01
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-09-03

目录

    /

    返回文章
    返回