Third-Order Nonlinear Optical Responses of Bis(15-crown-5)-stilbenes Binding to One- or Two-Alkali Metal Cation (Li+, Na+and K+)

Hai-Ling Yu Tong Zhang Tian-Liang Ma Bo Hong Zhi-Qiang Cheng

Hai-Ling Yu, Tong Zhang, Tian-Liang Ma, Bo Hong, Zhi-Qiang Cheng. Third-Order Nonlinear Optical Responses of Bis(15-crown-5)-stilbenes Binding to One- or Two-Alkali Metal Cation (Li+, Na+and K+)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206103
Citation: Hai-Ling Yu, Tong Zhang, Tian-Liang Ma, Bo Hong, Zhi-Qiang Cheng. Third-Order Nonlinear Optical Responses of Bis(15-crown-5)-stilbenes Binding to One- or Two-Alkali Metal Cation (Li+, Na+and K+)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206103

doi: 10.1063/1674-0068/cjcp2206103

Third-Order Nonlinear Optical Responses of Bis(15-crown-5)-stilbenes Binding to One- or Two-Alkali Metal Cation (Li+, Na+and K+)

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
  • 1.  Conformers of bis(15-crown-5)-stilbenes.

    2.  Structures of the metal cation derivatives of bis(15-crown-5)-stilbenes.

    Figure  1.  The structures of the compounds with 1 as the parent and their localized orbital locator (LOL) maps obtained by B3LYP/6-31G(d,p) level.

    Figure  2.  The fragments (F1 to F5, left panel) of the compounds and their NPA charges (right panel) obtained at the B3LYP/6-31G(d,p) level, $\Delta q= $$ q({\rm {L}}\cdot{({{\rm{M}}^{+/2+}})_2}) - q({f\rm{L}})$(L was the ligand).

    Figure  3.  The frontier molecular orbital energy levels of 1 and compounds with 1 as their parent.

    Figure  4.  The absorption spectra and electron density difference diagram of the studied compunds obtained at TD-CAM-B3LYP/6-311+G(d,p) (purple and blue indicate electron density accumulation and depletion, respectively).

    Figure  5.  Static mean second hyperpolarizabilities ($ \bar \gamma $) of compounds with (a) 1, (b) 2 and (c) 3 as the parent computed by the CAM-B3LYP and BHandHLYP functionals.

    Figure  6.  Schematic diagram of the $ - x \times \rho _{xxxx}^{(3)} $ for the compounds computed at the CAM-B3LYP/6-311G(d,p) level. Blue and purple colors indicate the positive contribution, while yellow and orange colors indicate the negative contribution.

    Figure  7.  The frequency-dependent second hyperpolarizabilities associated with the photoelectric Kerr effect ($\gamma {\rm{EOKE}}(−{\omega};{\omega},0,0)$, left panel ) and frequency-dependent second hyperpolarizabilities associated with the second harmonic generation $\gamma^{{\rm{SHG}}}(-2{\omega};{\omega},{\omega},0)$ right panel.

    Table  I.   The selected geometrical parameters and interaction energies Eint calculated at the B3LYP/6-31G(d,p) level.

    CompoundBond length/ÅDihedral/(°)Eint/(kcal/mol)
    M+–OO···OaO···O bC2−C3C3−C4C4−C5C1−C2−C5−C6
    a The average O···O bond length of O1···O2, O2···O3, O3···O4, O4···O5 and O5···O1 bonds.
    b The average O···O bond length of O6···O7, O7···O8, O8···O9, O9···O10 and O10···O11 bonds.
    c The values determined by X-ray analysis in Ref.[21].
    下载: 导出CSV

    Table  II.   The enthalpy and Gibbs free enthalpy (kcal·mol-1·K-1) and entropy (in kcal /mol of the complexation reaction calculated on B3LYP/ 6-31G(d,p) at 298.15 K and 1 atm.

    Compound$\Delta {H }$$\Delta {G }$$\Delta S$
    1·Li+ −120.8 −114.4 21.3
    1·Na+ −95.2 −87.1 27.1
    1·K+ −65.8 −57.9 26.7
    1·(Li+)2 −235.0 −221.6 44.9
    1·(Na+)2 −182.7 −168.1 49.0
    1·(K+)2 −122.0 −107.2 49.5
    下载: 导出CSV

    Table  III.   The wavelength of the main absorption peak (λ, nm), the transition energies from S0 to S1 state (∆E, eV) and the corresponding oscillator strengths (fos) , as well as the major contributions obtained at the CAM-B3LYP/6−311 + G(d,p) level.

    Compd.λEfosMO transition
    1 325.2 3.82 1.2904 HOMO→LUMO (94%)
    1·Li+ 343.3 3.61 1.1831 HOMO→LUMO (91%)
    1·Na+ 343.3 3.61 1.1794 HOMO→LUMO (90%)
    1·K+ 345.4 3.60 1.175 HOMO→LUMO+1 (80%)
    1·(Li+)2 316.7 3.92 1.2762 HOMO→LUMO (95%)
    1·(Na+)2 316.7 3.92 1.2706 HOMO→LUMO (95%)
    1·(K+)2 316.7 3.93 1.2547 HOMO→LUMO (95%)
    下载: 导出CSV
  • [1] X. Chen, X. Chang, H. Zang, Q. Wang, and W. Xiao, J. Alloy. Compd. 396, 255 (2005). doi: 10.1016/j.jallcom.2004.12.012
    [2] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev. 97, 1515 (1997). doi: 10.1021/cr960386p
    [3] J. M. Linet, S. Dinakaran, and S. J. Das, J. Alloy. Compd. 509, 3832 (2011). doi: 10.1016/j.jallcom.2010.12.083
    [4] R. Uthrakumar, C. Vesta, G. Bhagavannarayana, R. Robert, and S. J. Das, J. Alloy. Compd. 509, 2343 (2011). doi: 10.1016/j.jallcom.2010.11.015
    [5] J. D. Badjić, V. Balzani, A. Credi, S. Silvi, and J. F. Stoddart, Science 303, 1845 (2004). doi: 10.1126/science.1094791
    [6] M. V. Alfimov, S. P. Gromov, Y. V. Fedorov, O. A. Fedorova, A. I. Vedernikov, A. V. Churakov, L. G. Kuz’mina, J. A. K. Howard, S. Bossmann, A. Braun, M. Woerner, D. F. Sears, and J. Saltiel, J. Am. Chem. Soc. 121, 4992 (1999). doi: 10.1021/ja990370r
    [7] J. P. Desvergne and H. Bouas-Laurent, J. Chem. Soc. Chem. Commun. 403 (1978). doi: 10.1039/c39780000403
    [8] H. J. Song, M. Y. Zhang, H. L. Yu, C. H. Wang, H. Y. Zou, N. N. Ma, and Y. Q. Qiu, Comput. Theor. Chem. 1031, 7 (2014). doi: 10.1016/j.comptc.2014.01.005
    [9] S. Shinkai, T. Minami, Y. Kusano, and O. Manabe, J. Am. Chem. Soc. 105, 1851 (1983). doi: 10.1002/chin.198329223
    [10] M. S. Fonari, E. Luboch, A. Collas, A. Bukrej, F. Blockhuys, and J. F. Biernat, J. Mol. Struct. 892, 195 (2008). doi: 10.1016/j.molstruc.2008.05.032
    [11] K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, and Y. Sakurai, J. Am. Chem. Soc. 122, 5448 (2000). doi: 10.1021/ja9943694
    [12] W. S. Jonathan, Coord. Chem. Rev. 215, 171 (2001). doi: 10.1016/S0010-8545(01)00317-4
    [13] H. Jo, J. S. Yoo, and K. M. Ok, J. Alloy. Compd. 672, 470 (2016). doi: 10.1016/j.jallcom.2016.02.168
    [14] C. F Yin, W. B. Fan, W. D. Xiang, G. C. Hu, X. Hu, X. P. Chen, P. Z. Li, and X. J. Liang, J. Alloy. Compd. 23, 321 (2017). doi: 10.1016/j.jallcom.2016.11.288
    [15] Y. Lp, J. Yamauchi, and N. Azuma, J. Coord. Chem. 42, 291 (1997). doi: 10.1080/00958979708022859
    [16] C. Lichtenberg, P. Jochmann, T. P. Spaniol, and J. Okuda, Angew. Chem. Int. Ed. 50, 5753 (2011). doi: 10.1002/anie.201100073
    [17] S. P. Gromov, A. I. Vedernikov, N. A. Lobova, L. G. Kuz’mina, S. S. Basok, Y. A. Strelenko, M. V. Alfimov, and J. A. K. Howard, New J. Chem. 35, 724 (2011). doi: 10.1039/C0NJ00780C
    [18] M. Irie, Chem. Rev. 100, 1685 (2000). doi: 10.1021/cr980069d
    [19] B. Ardiçoğlu, G. Özbayoğlu, Z. Özdemir, and A. Yilmaz, J. Alloy. Compd. 418, 77 (2006). doi: 10.1016/j.jallcom.2005.08.099
    [20] E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007). doi: 10.1002/anie.200504313
    [21] G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008). doi: 10.1002/chin.200824270
    [22] H. L. Yu, B. Hong, Y. Q. Luo, and H. Y. Zhao, Can. J. Chem. 93, 297 (2015). doi: 10.1139/cjc-2014-0391
    [23] A. I. Vedernikov, E. N. Ushakov, A. A. Efremova, L. G. Kuz’mina, A. A. Moiseeva, N. A. Lobova, A. V. Churakov, Y. A. Strelenko, M. V. Alfimov, J. A. K. Howard, and S. P. Gromov, J. Org. Chem. 76, 6768 (2011). doi: 10.1021/jo201172w
    [24] A. I. Vedernikov, L. G. Kuz’mina, N. A. Lobova, E. N. Ushakov, J. A. K. Howard, M. V. Alfimov, and S. P. Gromov, Mendeleev Commun. 17, 151 (2007). doi: 10.1016/j.mencom
    [25] M. V. Fomina, A. S. Nikiforov, A. I. Vedernikov, N. A. Kurchavov, and S. P. Gromov, Mendeleev Commun. 24, 295 (2014). doi: 1016/j.mencom
    [26] S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, Nanoscale 8, 17998 (2016). doi: 10.1039/C6NR06097H
    [27] S. Muhammad, H. L. Xu, R. L. Zhong, Z. M. Su, A. G. Al-Sehemi, and A. Irfan, J. Mater. Chem. C 1, 5439 (2013). doi: 10.1039/c3tc31183j
    [28] S. Muhammad, H. L. Xu, M. R. S. Ashraf Janjua, Z. M. Su, and M. Nadeem, Phys. Chem. Chem. Phys. 12, 4791 (2010). doi: 10.1039/b924241d
    [29] S. Muhammad, M. R. S. A. Janjua, and Z. M. Su, J. Phys. Chem. C 113, 12551 (2009). doi: 10.1021/jp903075s
    [30] C. G. Liu, Z. M. Su, X. H. Guan, and S. Muhammad, J. Phys. Chem. C 115, 23946 (2011). doi: 10.1021/jp2049958
    [31] S. Muhammad, T. Minami, and H. Fukui, J. Phys. Chem. A 116, 1417 (2012). doi: 10.1021/jp209385b
    [32] L. Wang, Y. L. Liu, Q. J. Li, S. H. Chen, D. He, and M. S. Wang, J. Phys. Chem. A 126, 870 (2022). doi: 10.1021/acs.jpca.1c10236
    [33] L. Wang, Y. L. Liu, Q. J. Li, and S. H. Chen, D. He and M. S. Wang. Phys. Chem. Chem. Phys. 23, 405 (2021). doi: 10.1039/d0cp03253k
    [34] M. R. Jagadeesh, H. M. S. Kumarmar, and R. A. Kumaric, Can. J. Chem. 93, 1296 (2015). doi: 10.1139/cjp-2014-0571
    [35] L. Wang, S. H. Chen, D. He, Q. J. Li, Y. L. Liu, and M. S. Wang, J. Phys. Chem. C 124, 11081 (2020). doi: 10.1021/acs.jpcc.0c00896
    [36] H. L. Yu, W. Y. Wang, B. Hong, Y. Zong, Y. L. Si, and Z. Q. Hua, Phys. Chem. Chem. Phys. 18, 26487 (2016). doi: 10.1039/C6CP04577D
    [37] A. D. Becke, Phys. Rev. A 38, 3098 (1988). doi: 10.1103/PhysRevA.38.3098
    [38] A. D. Becke, J. Chem. Phys. 98, 5648 (1993). doi: 10.1063/1.464913
    [39] P. N. Prasad and D. J. Williams, New York: John Wiley & Sons, (1991)
    [40] M. Nakano, I. Shigemoto, S. Yamada, and K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995). doi: 10.1063/1.470657
    [41] K. Y. Suponitsky, Y. Liao, and A. E. Masunov, J. Phys. Chem. A 113, 10994 (2009). doi: 10.1021/jp902293q
    [42] M. Torrent-Sucarrat, J. M. Anglada, and J. M. Luis, J. Chem. Theory Comput. 7, 3935 (2011). doi: 10.1021/ct2005424
    [43] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998). doi: 10.1063/1.477483
    [44] S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 (1999). doi: 10.1016/S0009-2614(99)00137-2
    [45] P. A. Limacher, K. V. Mikkelsen, and H. P. Lüthi, J. Chem. Phys. 130, 467 (2009). doi: 10.1063/1.3139023
    [46] R. V. Solomon, P. Veerapandian, S. A. Vedha, and P. Venuvanalingam, J. Phys. Chem. A 116, 4667 (2012). doi: 10.1021/jp302276w
    [47] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. , F. O. J. E. Peralta, M. Bearpark, J. J. Heyd, E. Brothers, V. N. S. K. N. Kudin, T. Keith, R. Kobayashi, J. Normand, A. R. K. Raghavachari, J. C. Burant, S. S. Iyengar, J. Tomasi, N. R. M. Cossi, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, C. A. V. Bakken, J. Jaramillo, R. Gomperts, R. E. Stratmann, A. J. A. O. Yazyev, R. Cammi, C. Pomelli, J. W. Ochterski, K. M. R. L. Martin, V. G. Zakrzewski, G. A. Voth, J. J. D. P. Salvador, S. Dapprich, A. D. Daniels, J. B. F. O. Farkas, J. V. Ortiz, J. Cioslowski, G. W. , D. J. Fox, Revision A. 02, Wallingford CT: Gaussian, Inc., (2009).
    [48] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [49] T. Lu and F. W. Chen, Acta Phys. -Chim. Sin. 27, 2786 (2011). doi: 10.3866/PKU
    [50] P. Karamanis and C. Pouchan, J. Phys. Chem. C 117, 3134 (2013). doi: 10.1021/jp3114682
    [51] M. Ishida, J. Y. Shin, J. M. Lim, B. S. Lee, M. C. Yoon, T. Koide, J. L. Sessler, A. Osuka, and D. Kim, J. Am. Chem. Soc. 133, 15533 (2011). doi: 10.1021/ja204626t
    [52] P. Korambath and H. A. Kurtz, J. Am. Chem. Soc. 628, 133 (1996). doi: 10.1021/bk-1996-0628.ch007
  • 加载中
图(9) / 表(3)
  • 文章访问数:  360
  • HTML全文浏览量:  141
  • PDF下载量:  16
  • 被引次数: 0
  • 收稿日期:  2022-06-28
  • 录用日期:  2022-09-15
  • 网络出版日期:  2022-09-30