Third-Order Nonlinear Optical Responses of Bis(15-crown-5)-stilbenes Binding to One- or Two-Alkali Metal Cation (Li+, Na+and K+)
-
Abstract: Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications, such as cation detectors, because of their ability to selectively bind to alkali metal cations, Bis(15-crown-5)-stilbenes and its derivatives with complexation of one- or two-alkali metal cation (Li+, Na+ and K+) have been theoretically investigated by quantum chemistry methods. The coordination of alkali cations results in partial shrinkage of crown ethers, which directly affected natural distribution analysis charges and molecular orbital energy levels. The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability. When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene, the absorption spectra were obviously redshifted and the mean second hyperpolarizability values were slightly increased; while two alkali metal ions were added to bis(15-crown-5)-stilbene, the absorption spectra were obviously blue shifted and the mean second hyperpolarizability values decreased. On the other hand, as the radius of the alkali ions increaseed, the mean second hyperpolarizability values of the compounds increased gradually. It indicated that the mean second hyperpolarizability value was sensitive to the number and radius of the alkali metal cations, thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali metal ions.
-
Key words:
- Bis(crown)-stilbene /
- Cation detector /
- Metal cation /
- Quantum chemistry /
- Second hyperpolarizability
-
Figure 7. The frequency-dependent second hyperpolarizabilities associated with the photoelectric Kerr effect (
$\gamma {\rm{EOKE}}(−{\omega};{\omega},0,0)$ , left panel ) and frequency-dependent second hyperpolarizabilities associated with the second harmonic generation$\gamma^{{\rm{SHG}}}(-2{\omega};{\omega},{\omega},0)$ right panel.Table I. The selected geometrical parameters and interaction energies Eint calculated at the B3LYP/6-31G(d,p) level.
Compound Bond length/Å Dihedral/(°) Eint/(kcal/mol) M+–O O···Oa O···O b C2−C3 C3−C4 C4−C5 C1−C2−C5−C6 1 — 2.806
(2.982)c2.806
(2.982)c1.463
(1.480)c1.350
(1.334)c1.463
(1.481)c−12.4
(−14.6)c1·Li+ 2.21 2.798 2.600 1.457 1.352 1.461 11.0 −120.0 1·Na+ 2.31 2.798 2.728 1.457 1.352 1.461 14.4 −93.7 1·K+ 2.70 2.798 2.769 1.457 1.352 1.461 −0.3 −66.9 1·(Li+)2 2.20 2.597 2.597 1.465 1.348 1.465 0.6 −221.1 1·(Na+)2 2.30 2.724 2.724 1.465 1.348 1.465 0.7 −180.1 1·(K+)2 2.70 2.759 2.760 1.465 1.348 1.465 15.9 −124.3 a The average O···O bond length of O1···O2, O2···O3, O3···O4, O4···O5 and O5···O1 bonds.
b The average O···O bond length of O6···O7, O7···O8, O8···O9, O9···O10 and O10···O11 bonds.
c The values determined by X-ray analysis in Ref.[21].Table II. The enthalpy and Gibbs free enthalpy (kcal·mol-1·K-1) and entropy (in kcal /mol of the complexation reaction calculated on B3LYP/ 6-31G(d,p) at 298.15 K and 1 atm.
Compound $\Delta {H }$⦵ $\Delta {G }$⦵ $\Delta S$⦵ 1·Li+ −120.8 −114.4 21.3 1·Na+ −95.2 −87.1 27.1 1·K+ −65.8 −57.9 26.7 1·(Li+)2 −235.0 −221.6 44.9 1·(Na+)2 −182.7 −168.1 49.0 1·(K+)2 −122.0 −107.2 49.5 Table III. The wavelength of the main absorption peak (λ, nm), the transition energies from S0 to S1 state (∆E, eV) and the corresponding oscillator strengths (fos) , as well as the major contributions obtained at the CAM-B3LYP/6−311 + G(d,p) level.
Compd. λ ∆E fos MO transition 1 325.2 3.82 1.2904 HOMO→LUMO (94%) 1·Li+ 343.3 3.61 1.1831 HOMO→LUMO (91%) 1·Na+ 343.3 3.61 1.1794 HOMO→LUMO (90%) 1·K+ 345.4 3.60 1.175 HOMO→LUMO+1 (80%) 1·(Li+)2 316.7 3.92 1.2762 HOMO→LUMO (95%) 1·(Na+)2 316.7 3.92 1.2706 HOMO→LUMO (95%) 1·(K+)2 316.7 3.93 1.2547 HOMO→LUMO (95%) -
[1] X. Chen, X. Chang, H. Zang, Q. Wang, and W. Xiao, J. Alloy. Compd. 396, 255 (2005). doi: 10.1016/j.jallcom.2004.12.012 [2] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev. 97, 1515 (1997). doi: 10.1021/cr960386p [3] J. M. Linet, S. Dinakaran, and S. J. Das, J. Alloy. Compd. 509, 3832 (2011). doi: 10.1016/j.jallcom.2010.12.083 [4] R. Uthrakumar, C. Vesta, G. Bhagavannarayana, R. Robert, and S. J. Das, J. Alloy. Compd. 509, 2343 (2011). doi: 10.1016/j.jallcom.2010.11.015 [5] J. D. Badjić, V. Balzani, A. Credi, S. Silvi, and J. F. Stoddart, Science 303, 1845 (2004). doi: 10.1126/science.1094791 [6] M. V. Alfimov, S. P. Gromov, Y. V. Fedorov, O. A. Fedorova, A. I. Vedernikov, A. V. Churakov, L. G. Kuz’mina, J. A. K. Howard, S. Bossmann, A. Braun, M. Woerner, D. F. Sears, and J. Saltiel, J. Am. Chem. Soc. 121, 4992 (1999). doi: 10.1021/ja990370r [7] J. P. Desvergne and H. Bouas-Laurent, J. Chem. Soc. Chem. Commun. 403 (1978). doi: 10.1039/c39780000403 [8] H. J. Song, M. Y. Zhang, H. L. Yu, C. H. Wang, H. Y. Zou, N. N. Ma, and Y. Q. Qiu, Comput. Theor. Chem. 1031, 7 (2014). doi: 10.1016/j.comptc.2014.01.005 [9] S. Shinkai, T. Minami, Y. Kusano, and O. Manabe, J. Am. Chem. Soc. 105, 1851 (1983). doi: 10.1002/chin.198329223 [10] M. S. Fonari, E. Luboch, A. Collas, A. Bukrej, F. Blockhuys, and J. F. Biernat, J. Mol. Struct. 892, 195 (2008). doi: 10.1016/j.molstruc.2008.05.032 [11] K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, and Y. Sakurai, J. Am. Chem. Soc. 122, 5448 (2000). doi: 10.1021/ja9943694 [12] W. S. Jonathan, Coord. Chem. Rev. 215, 171 (2001). doi: 10.1016/S0010-8545(01)00317-4 [13] H. Jo, J. S. Yoo, and K. M. Ok, J. Alloy. Compd. 672, 470 (2016). doi: 10.1016/j.jallcom.2016.02.168 [14] C. F Yin, W. B. Fan, W. D. Xiang, G. C. Hu, X. Hu, X. P. Chen, P. Z. Li, and X. J. Liang, J. Alloy. Compd. 23, 321 (2017). doi: 10.1016/j.jallcom.2016.11.288 [15] Y. Lp, J. Yamauchi, and N. Azuma, J. Coord. Chem. 42, 291 (1997). doi: 10.1080/00958979708022859 [16] C. Lichtenberg, P. Jochmann, T. P. Spaniol, and J. Okuda, Angew. Chem. Int. Ed. 50, 5753 (2011). doi: 10.1002/anie.201100073 [17] S. P. Gromov, A. I. Vedernikov, N. A. Lobova, L. G. Kuz’mina, S. S. Basok, Y. A. Strelenko, M. V. Alfimov, and J. A. K. Howard, New J. Chem. 35, 724 (2011). doi: 10.1039/C0NJ00780C [18] M. Irie, Chem. Rev. 100, 1685 (2000). doi: 10.1021/cr980069d [19] B. Ardiçoğlu, G. Özbayoğlu, Z. Özdemir, and A. Yilmaz, J. Alloy. Compd. 418, 77 (2006). doi: 10.1016/j.jallcom.2005.08.099 [20] E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007). doi: 10.1002/anie.200504313 [21] G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008). doi: 10.1002/chin.200824270 [22] H. L. Yu, B. Hong, Y. Q. Luo, and H. Y. Zhao, Can. J. Chem. 93, 297 (2015). doi: 10.1139/cjc-2014-0391 [23] A. I. Vedernikov, E. N. Ushakov, A. A. Efremova, L. G. Kuz’mina, A. A. Moiseeva, N. A. Lobova, A. V. Churakov, Y. A. Strelenko, M. V. Alfimov, J. A. K. Howard, and S. P. Gromov, J. Org. Chem. 76, 6768 (2011). doi: 10.1021/jo201172w [24] A. I. Vedernikov, L. G. Kuz’mina, N. A. Lobova, E. N. Ushakov, J. A. K. Howard, M. V. Alfimov, and S. P. Gromov, Mendeleev Commun. 17, 151 (2007). doi: 10.1016/j.mencom [25] M. V. Fomina, A. S. Nikiforov, A. I. Vedernikov, N. A. Kurchavov, and S. P. Gromov, Mendeleev Commun. 24, 295 (2014). doi: 1016/j.mencom [26] S. Muhammad, M. Nakano, A. G. Al-Sehemi, Y. Kitagawa, A. Irfan, A. R. Chaudhry, R. Kishi, S. Ito, K. Yoneda, and K. Fukuda, Nanoscale 8, 17998 (2016). doi: 10.1039/C6NR06097H [27] S. Muhammad, H. L. Xu, R. L. Zhong, Z. M. Su, A. G. Al-Sehemi, and A. Irfan, J. Mater. Chem. C 1, 5439 (2013). doi: 10.1039/c3tc31183j [28] S. Muhammad, H. L. Xu, M. R. S. Ashraf Janjua, Z. M. Su, and M. Nadeem, Phys. Chem. Chem. Phys. 12, 4791 (2010). doi: 10.1039/b924241d [29] S. Muhammad, M. R. S. A. Janjua, and Z. M. Su, J. Phys. Chem. C 113, 12551 (2009). doi: 10.1021/jp903075s [30] C. G. Liu, Z. M. Su, X. H. Guan, and S. Muhammad, J. Phys. Chem. C 115, 23946 (2011). doi: 10.1021/jp2049958 [31] S. Muhammad, T. Minami, and H. Fukui, J. Phys. Chem. A 116, 1417 (2012). doi: 10.1021/jp209385b [32] L. Wang, Y. L. Liu, Q. J. Li, S. H. Chen, D. He, and M. S. Wang, J. Phys. Chem. A 126, 870 (2022). doi: 10.1021/acs.jpca.1c10236 [33] L. Wang, Y. L. Liu, Q. J. Li, and S. H. Chen, D. He and M. S. Wang. Phys. Chem. Chem. Phys. 23, 405 (2021). doi: 10.1039/d0cp03253k [34] M. R. Jagadeesh, H. M. S. Kumarmar, and R. A. Kumaric, Can. J. Chem. 93, 1296 (2015). doi: 10.1139/cjp-2014-0571 [35] L. Wang, S. H. Chen, D. He, Q. J. Li, Y. L. Liu, and M. S. Wang, J. Phys. Chem. C 124, 11081 (2020). doi: 10.1021/acs.jpcc.0c00896 [36] H. L. Yu, W. Y. Wang, B. Hong, Y. Zong, Y. L. Si, and Z. Q. Hua, Phys. Chem. Chem. Phys. 18, 26487 (2016). doi: 10.1039/C6CP04577D [37] A. D. Becke, Phys. Rev. A 38, 3098 (1988). doi: 10.1103/PhysRevA.38.3098 [38] A. D. Becke, J. Chem. Phys. 98, 5648 (1993). doi: 10.1063/1.464913 [39] P. N. Prasad and D. J. Williams, New York: John Wiley & Sons, (1991) [40] M. Nakano, I. Shigemoto, S. Yamada, and K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995). doi: 10.1063/1.470657 [41] K. Y. Suponitsky, Y. Liao, and A. E. Masunov, J. Phys. Chem. A 113, 10994 (2009). doi: 10.1021/jp902293q [42] M. Torrent-Sucarrat, J. M. Anglada, and J. M. Luis, J. Chem. Theory Comput. 7, 3935 (2011). doi: 10.1021/ct2005424 [43] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998). doi: 10.1063/1.477483 [44] S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 (1999). doi: 10.1016/S0009-2614(99)00137-2 [45] P. A. Limacher, K. V. Mikkelsen, and H. P. Lüthi, J. Chem. Phys. 130, 467 (2009). doi: 10.1063/1.3139023 [46] R. V. Solomon, P. Veerapandian, S. A. Vedha, and P. Venuvanalingam, J. Phys. Chem. A 116, 4667 (2012). doi: 10.1021/jp302276w [47] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. , F. O. J. E. Peralta, M. Bearpark, J. J. Heyd, E. Brothers, V. N. S. K. N. Kudin, T. Keith, R. Kobayashi, J. Normand, A. R. K. Raghavachari, J. C. Burant, S. S. Iyengar, J. Tomasi, N. R. M. Cossi, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, C. A. V. Bakken, J. Jaramillo, R. Gomperts, R. E. Stratmann, A. J. A. O. Yazyev, R. Cammi, C. Pomelli, J. W. Ochterski, K. M. R. L. Martin, V. G. Zakrzewski, G. A. Voth, J. J. D. P. Salvador, S. Dapprich, A. D. Daniels, J. B. F. O. Farkas, J. V. Ortiz, J. Cioslowski, G. W. , D. J. Fox, Revision A. 02, Wallingford CT: Gaussian, Inc., (2009). [48] T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885 [49] T. Lu and F. W. Chen, Acta Phys. -Chim. Sin. 27, 2786 (2011). doi: 10.3866/PKU [50] P. Karamanis and C. Pouchan, J. Phys. Chem. C 117, 3134 (2013). doi: 10.1021/jp3114682 [51] M. Ishida, J. Y. Shin, J. M. Lim, B. S. Lee, M. C. Yoon, T. Koide, J. L. Sessler, A. Osuka, and D. Kim, J. Am. Chem. Soc. 133, 15533 (2011). doi: 10.1021/ja204626t [52] P. Korambath and H. A. Kurtz, J. Am. Chem. Soc. 628, 133 (1996). doi: 10.1021/bk-1996-0628.ch007 -