Photoluminescence Enhancement of Aluminum Ion Intercalated MoS2 Quantum Dots

Yanmin Kuang Wenli He Zhichao Zhu Yaru Chen Dongwei Ma Xiaojuan Wang Lijun Guo Yulu He Zhen Chi Xia Ran Luogang Xie

Yanmin Kuang, Wenli He, Zhichao Zhu, Yaru Chen, Dongwei Ma, Xiaojuan Wang, Lijun Guo, Yulu He, Zhen Chi, Xia Ran, Luogang Xie. Photoluminescence Enhancement of Aluminum Ion Intercalated MoS2 Quantum Dots[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206101
Citation: Yanmin Kuang, Wenli He, Zhichao Zhu, Yaru Chen, Dongwei Ma, Xiaojuan Wang, Lijun Guo, Yulu He, Zhen Chi, Xia Ran, Luogang Xie. Photoluminescence Enhancement of Aluminum Ion Intercalated MoS2 Quantum Dots[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206101

doi: 10.1063/1674-0068/cjcp2206101

Photoluminescence Enhancement of Aluminum Ion Intercalated MoS2 Quantum Dots

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Illustration of the preparation process for MoS2 QDs in solvothermal method with Al3+ intercalation

    Figure  2.  (a) Typical TEM image of MoS2 QDs. HRTEM image in the inset shows the lattice spacing of MoS2 QDs. (b) Diameter distribution of 200 MoS2 QDs. (c) Typical AFM image of MoS2 QDs dispersed on mica substrate. (d) Height profile for the green line marked in (c).

    Figure  3.  XPS spectra of MoS2 QDs prepared with 750 μmol/L Al3+. High-resolution peak fitting for (a) Mo 3d, (b) S 2p, and (c) Al 2p, respectively. The solid line shows the fitting result of experimental data.

    Figure  4.  (a) and (b) Photographs of MoS2 QDs dispersed in DMF prepared with different amounts of Al3+ (0, 75, 150, 750 and 1500 μmol/L) under daylight and UV light illumination, respectively. (c) UV-Vis absorption of MoS2 QDs synthesized with different amounts of Al3+ (0, 75, 150, 750 and 1500 μmol/L). (d) PL spectra of the samples with the 350 nm excitation. (e) Corresponding PL quantum yields of samples based on the data in (a) and (b). (f) PL decay curves of samples under the fs-pulsed excitation at 350 nm.

    Figure  5.  PL decay curves of MoS2 QDs (a) at detection wavelength of 390, 410, and 440 nm excited by 350 nm laser; (b) at detection wavelength of 410 nm excited by 340, 350, and 370 nm laser, respectively. (c) A schematic diagram of structure model for MoS2 QDs, yellow balls: sulfur; green balls: molybdenum; purple balls: Al at the S-edge, respectively. (d) Schematic diagram showing the exciton relaxation channel in MoS2 QDs. S0, S1, and Ssur represent ground state, excited state of MoS2 QDs core, and surface state, respectively.

    Table  I.   PL decay lifetime components and relative amplitudes with a bi-exponential fitting for samples with different concentrations of Al3+ (in unit of μmol/L).

    [Al3+]A1/%A2/%τ1/nsτ2/ns
    095.84.21.678.01
    7590.19.91.698.01
    15085.914.11.728.01
    75085.614.41.738.02
    150085.514.51.738.02
    下载: 导出CSV
  • [1] T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, and Z. Wang, Nat. Nanotechnol. 16, 1201 (2021). doi: 10.1038/s41565-021-00963-8
    [2] W. Sakong, H. Z. Gul, B. Ahn, S. Oh, G. Kim, E. Sim, J. Bahng, H. Yi, M. Kim, and M. Yun, Nano Lett. 22, 5207 (2022). doi: 10.1021/acs.nanolett.2c00853
    [3] S. Xu, D. Li, and P. Wu, Adv. Funct. Mater. 25, 1127 (2015). doi: 10.1002/adfm.201403863
    [4] P. Zhang, B. Xu, G. Chen, C. Gao, and M. Gao, Electrochim. Acta 270, 256 (2018). doi: 10.1016/j.electacta.2018.03.097
    [5] W. Gu, Y. Yan, C. Zhang, C. Ding, and Y. Xian, ACS Appl. Mater. Interfaces 8, 11272 (2016). doi: 10.1021/acsami.6b01166
    [6] H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang, and H. Ju, ACS Appl. Mater. Interfaces 8, 3107 (2016). doi: 10.1021/acsami.5b10459
    [7] H. D. Ha, D. J. Han, J. S. Choi, M. Park, and T. S. Seo, Small 10, 3858 (2014). doi: 10.1002/smll.201400988
    [8] W. Qiao, S. Yan, X. Song, X. Zhang, X. He, W. Zhong, and Y. Du, Appl. Surf. Sci. 359, 130 (2015). doi: 10.1016/j.apsusc.2015.10.089
    [9] D. Gopalakrishnan, D. Damien, and M. M. Shaijumon, ACS Nano 8, 5297 (2014). doi: 10.1021/nn501479e
    [10] J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, and K. Ping Loh, Nat. Commun. 5, 2995 (2014). doi: 10.1038/ncomms3995
    [11] S. J. An, D. Y. Park, C. Lee, S. Bang, D. A. Nguyen, S. H. Kim, H. Y. Kim, H. J. Jeong, and M. S. Jeong, Appl. Surf. Sci. 511, 145507 (2020). doi: 10.1016/j.apsusc.2020.145507
    [12] G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, and S. Y. Choi, ACS Appl. Mater. Interfaces 6, 7084 (2014). doi: 10.1021/am4060222
    [13] W. Yin, X. Liu, X. Zhang, X. Gao, V. L. Colvin, Y. Zhang, and W. W. Yu, Chem. Mater. 32, 4409 (2020). doi: 10.1021/acs.chemmater.0c01441
    [14] S. Zhang, C. G. Wang, M. Y. Li, D. Huang, L. J. Li, W. Ji, and S. Wu, Phys. Rev. Lett. 119, 046101 (2017). doi: 10.1103/PhysRevLett.119.046101
    [15] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, ACS Nano 8, 5738 (2014). doi: 10.1021/nn500532f
    [16] Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano, and K. Kalantar-zadeh, ACS Nano 7, 10083 (2013). doi: 10.1021/nn4041987
    [17] B. L. Li, L. X. Chen, H. L. Zou, J. L. Lei, H. Q. Luo, and N. B. Li, Nanoscale 6, 9831 (2014). doi: 10.1039/C4NR02592J
    [18] V. Vandalon, M. A. Verheijen, W. M. M. Kessels, and A. A. Bol, ACS Appl. Nano Mater. 3, 10200 (2020). doi: 10.1021/acsanm.0c02167
    [19] X. Meng, Y. Cao, J. A. Libera, and J. W. Elam, Chem. Mater. 29, 9043 (2017). doi: 10.1021/acs.chemmater.7b02175
    [20] Y. Shi, Y. Zhou, D. R. Yang, W. X. Xu, C. Wang, F. B. Wang, J. J. Xu, X. H. Xia, and H. Y. Chen, J. Am. Chem. Soc. 139, 15479 (2017). doi: 10.1021/jacs.7b08881
    [21] K. K. Tadi, A. M. Palve, S. Pal, P. M. Sudeep, and T. N. Narayanan, Nanotechnology 27, 275402 (2016). doi: 10.1088/0957-4484/27/27/275402
    [22] K. Miyakeand and H. Shigekawa, Synth. Met. 71, 1753 (1995). doi: 10.1016/0379-6779(94)03036-6
    [23] Z. Chen, Z. Tao, S. Cong, J. Hou, D. Zhang, F. Geng, and Z. Zhao, Chem. Commun. 52, 11442 (2016). doi: 10.1039/C6CC06325J
    [24] G. Chen, Z. Zhuo, K. Ni, N. Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, X. Wu, R. S. Ruoff, and Y. Zhu, Small 11, 5296 (2015). doi: 10.1002/smll.201501611
    [25] Q. Liu, C. Hu, and X. Wang, RSC Adv. 6, 25605 (2016). doi: 10.1039/C6RA00572A
    [26] V. Nguyen, J. Si, L. Yan, and X. Hou, Carbon 95, 659 (2015). doi: 10.1016/j.carbon.2015.08.066
    [27] V. Nguyen, Q. Dong, L. Yan, N. Zhao, and P. H. Le, J. Lumin. 214, 116554 (2019). doi: 10.1016/j.jlumin.2019.116554
    [28] S. P. Caigas, S. R. M. Santiago, T. N. Lin, C. A. J. Lin, C. T. Yuan, J. L. Shen, and T. Y. Lin, Appl. Phys. Lett. 112, 092106 (2018). doi: 10.1063/1.5009638
    [29] H. Zhu, W. Zan, W. Chen, W. Jiang, X. Ding, B. L. Li, Y. Mu, L. Wang, S. Garaj, and D. T. Leong, Adv. Mater. 34, 2200004 (2022). doi: 10.1002/adma.202200004
    [30] Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014). doi: 10.1038/nnano.2014.64
    [31] D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. 22, 734 (2010). doi: 10.1002/adma.200902825
    [32] H. Liu, C. Wang, D. Liu, and J. Luo, Nanoscale 11, 7913 (2019). doi: 10.1039/C9NR00967A
  • CJCP2206101SP.docx
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  169
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-10-06
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回