-
Abstract: Low photoluminescence (PL) quantum yield of molybdenum disulfide (MoS2) quantum dots (QDs) has limited practical application as potential fluorescent materials. Here, we report the intercalation of aluminum ion (Al3+) to enhance the PL of MoS2 QDs and the underlying mechanism. With detailed characterization and exciton dynamics study, we suggest that additional surface states including new emission centers have been effectively introduced to MoS2 QDs by the Al3+ intercalation. The synergy of new radiative pathway for exciton recombination and the passivation of non-radiative surface traps is responsible for the enhanced fluorescence of MoS2 QDs. Our findings demonstrate an efficient strategy to improve the optical properties of MoS2 QDs and are important for understanding the regulation effect of surface states on the emission of two dimensional sulfide QDs.
-
Key words:
- Molybdenum disullfide /
- Quantum dot /
- Photoluminescence enhancement /
- Exciton dynamics
-
Figure 4. (a) and (b) Photographs of MoS2 QDs dispersed in DMF prepared with different amounts of Al3+ (0, 75, 150, 750 and 1500 μmol/L) under daylight and UV light illumination, respectively. (c) UV-Vis absorption of MoS2 QDs synthesized with different amounts of Al3+ (0, 75, 150, 750 and 1500 μmol/L). (d) PL spectra of the samples with the 350 nm excitation. (e) Corresponding PL quantum yields of samples based on the data in (a) and (b). (f) PL decay curves of samples under the fs-pulsed excitation at 350 nm.
Figure 5. PL decay curves of MoS2 QDs (a) at detection wavelength of 390, 410, and 440 nm excited by 350 nm laser; (b) at detection wavelength of 410 nm excited by 340, 350, and 370 nm laser, respectively. (c) A schematic diagram of structure model for MoS2 QDs, yellow balls: sulfur; green balls: molybdenum; purple balls: Al at the S-edge, respectively. (d) Schematic diagram showing the exciton relaxation channel in MoS2 QDs. S0, S1, and Ssur represent ground state, excited state of MoS2 QDs core, and surface state, respectively.
Table I. PL decay lifetime components and relative amplitudes with a bi-exponential fitting for samples with different concentrations of Al3+ (in unit of μmol/L).
[Al3+] A1/% A2/% τ1/ns τ2/ns 0 95.8 4.2 1.67 8.01 75 90.1 9.9 1.69 8.01 150 85.9 14.1 1.72 8.01 750 85.6 14.4 1.73 8.02 1500 85.5 14.5 1.73 8.02 -
[1] T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, and Z. Wang, Nat. Nanotechnol. 16, 1201 (2021). doi: 10.1038/s41565-021-00963-8 [2] W. Sakong, H. Z. Gul, B. Ahn, S. Oh, G. Kim, E. Sim, J. Bahng, H. Yi, M. Kim, and M. Yun, Nano Lett. 22, 5207 (2022). doi: 10.1021/acs.nanolett.2c00853 [3] S. Xu, D. Li, and P. Wu, Adv. Funct. Mater. 25, 1127 (2015). doi: 10.1002/adfm.201403863 [4] P. Zhang, B. Xu, G. Chen, C. Gao, and M. Gao, Electrochim. Acta 270, 256 (2018). doi: 10.1016/j.electacta.2018.03.097 [5] W. Gu, Y. Yan, C. Zhang, C. Ding, and Y. Xian, ACS Appl. Mater. Interfaces 8, 11272 (2016). doi: 10.1021/acsami.6b01166 [6] H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang, and H. Ju, ACS Appl. Mater. Interfaces 8, 3107 (2016). doi: 10.1021/acsami.5b10459 [7] H. D. Ha, D. J. Han, J. S. Choi, M. Park, and T. S. Seo, Small 10, 3858 (2014). doi: 10.1002/smll.201400988 [8] W. Qiao, S. Yan, X. Song, X. Zhang, X. He, W. Zhong, and Y. Du, Appl. Surf. Sci. 359, 130 (2015). doi: 10.1016/j.apsusc.2015.10.089 [9] D. Gopalakrishnan, D. Damien, and M. M. Shaijumon, ACS Nano 8, 5297 (2014). doi: 10.1021/nn501479e [10] J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, and K. Ping Loh, Nat. Commun. 5, 2995 (2014). doi: 10.1038/ncomms3995 [11] S. J. An, D. Y. Park, C. Lee, S. Bang, D. A. Nguyen, S. H. Kim, H. Y. Kim, H. J. Jeong, and M. S. Jeong, Appl. Surf. Sci. 511, 145507 (2020). doi: 10.1016/j.apsusc.2020.145507 [12] G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, and S. Y. Choi, ACS Appl. Mater. Interfaces 6, 7084 (2014). doi: 10.1021/am4060222 [13] W. Yin, X. Liu, X. Zhang, X. Gao, V. L. Colvin, Y. Zhang, and W. W. Yu, Chem. Mater. 32, 4409 (2020). doi: 10.1021/acs.chemmater.0c01441 [14] S. Zhang, C. G. Wang, M. Y. Li, D. Huang, L. J. Li, W. Ji, and S. Wu, Phys. Rev. Lett. 119, 046101 (2017). doi: 10.1103/PhysRevLett.119.046101 [15] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, ACS Nano 8, 5738 (2014). doi: 10.1021/nn500532f [16] Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano, and K. Kalantar-zadeh, ACS Nano 7, 10083 (2013). doi: 10.1021/nn4041987 [17] B. L. Li, L. X. Chen, H. L. Zou, J. L. Lei, H. Q. Luo, and N. B. Li, Nanoscale 6, 9831 (2014). doi: 10.1039/C4NR02592J [18] V. Vandalon, M. A. Verheijen, W. M. M. Kessels, and A. A. Bol, ACS Appl. Nano Mater. 3, 10200 (2020). doi: 10.1021/acsanm.0c02167 [19] X. Meng, Y. Cao, J. A. Libera, and J. W. Elam, Chem. Mater. 29, 9043 (2017). doi: 10.1021/acs.chemmater.7b02175 [20] Y. Shi, Y. Zhou, D. R. Yang, W. X. Xu, C. Wang, F. B. Wang, J. J. Xu, X. H. Xia, and H. Y. Chen, J. Am. Chem. Soc. 139, 15479 (2017). doi: 10.1021/jacs.7b08881 [21] K. K. Tadi, A. M. Palve, S. Pal, P. M. Sudeep, and T. N. Narayanan, Nanotechnology 27, 275402 (2016). doi: 10.1088/0957-4484/27/27/275402 [22] K. Miyakeand and H. Shigekawa, Synth. Met. 71, 1753 (1995). doi: 10.1016/0379-6779(94)03036-6 [23] Z. Chen, Z. Tao, S. Cong, J. Hou, D. Zhang, F. Geng, and Z. Zhao, Chem. Commun. 52, 11442 (2016). doi: 10.1039/C6CC06325J [24] G. Chen, Z. Zhuo, K. Ni, N. Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, X. Wu, R. S. Ruoff, and Y. Zhu, Small 11, 5296 (2015). doi: 10.1002/smll.201501611 [25] Q. Liu, C. Hu, and X. Wang, RSC Adv. 6, 25605 (2016). doi: 10.1039/C6RA00572A [26] V. Nguyen, J. Si, L. Yan, and X. Hou, Carbon 95, 659 (2015). doi: 10.1016/j.carbon.2015.08.066 [27] V. Nguyen, Q. Dong, L. Yan, N. Zhao, and P. H. Le, J. Lumin. 214, 116554 (2019). doi: 10.1016/j.jlumin.2019.116554 [28] S. P. Caigas, S. R. M. Santiago, T. N. Lin, C. A. J. Lin, C. T. Yuan, J. L. Shen, and T. Y. Lin, Appl. Phys. Lett. 112, 092106 (2018). doi: 10.1063/1.5009638 [29] H. Zhu, W. Zan, W. Chen, W. Jiang, X. Ding, B. L. Li, Y. Mu, L. Wang, S. Garaj, and D. T. Leong, Adv. Mater. 34, 2200004 (2022). doi: 10.1002/adma.202200004 [30] Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014). doi: 10.1038/nnano.2014.64 [31] D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. 22, 734 (2010). doi: 10.1002/adma.200902825 [32] H. Liu, C. Wang, D. Liu, and J. Luo, Nanoscale 11, 7913 (2019). doi: 10.1039/C9NR00967A -
CJCP2206101SP.docx
-