Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water

Lufeng Yuan Wangyang Li Guangyuan Xu Mengqi Wan Zhen Zhang

Lufeng Yuan, Wangyang Li, Guangyuan Xu, Mengqi Wan, Zhen Zhang. Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206100
Citation: Lufeng Yuan, Wangyang Li, Guangyuan Xu, Mengqi Wan, Zhen Zhang. Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2206100

doi: 10.1063/1674-0068/cjcp2206100

Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  (a) Cyclic voltammograms (CVs) of ZnO electrode in 0.5 mol/L Na2SO4 aqueous electrolyte at different potential ranges. Insets show the photos of ZnO electrode at the indicated potentials. (b) The histogram of ZnO electrode shows the reduction charges per square centimeter (Qreduction, blue columns) and the oxidation charges per square centimeter (Qoxidation, red columns) at different scanning potential intervals during the CV processes. Inset shows the current-time plot of ZnO electrode in the range of 0.95 V to −1.05 V during the CV process. (c) The ratio of Qoxidation/Qreduction on ZnO electrode is plotted as a function of the scanning potential range.

    Figure  2.  CVs of ZnO electrodes in 0.5 mol/L Na2SO4 aqueous electrolyte within potential windows of 0.95 V to −0.95 V at various scanning rates.

    Figure  3.  The cathodic current vs. time curve of ZnO electrode polarized at −0.85 V for 1000 s.

    Figure  4.  SEM images for ZnO electrodes at (a) OCP and –0.85 V polarization of (b) 100 s, (c) 200 s, (d) 400 s, (e) 600 s, (f) 1000 s.

    Figure  5.  (a) In situ Raman and (b) PL spectra of ZnO electrodes polarized at –0.85 V for different time. The Raman peaks are assigned by the corresponding vibrational modes (the motion of the dominant atom is indicated by the red arrow).

  • [1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and Morkoç, J. Appl. Phys. 98, 11 (2005). doi: 10.1063/1.1992666
    [2] C. Klingshirn, Phys. Status. Solidi (b) 244, 3027 (2007). doi: 10.1002/pssb.200743072
    [3] N. Li, F. Jiao, X. L. Pan, Y. Ding, J. Y. Feng, and X. H. Bao, ACS Catal. 9, 960 (2018).
    [4] Y. Liu, Y. Li, and H. Zeng, J. Nanomater. 2013, 9 (2013).
    [5] Y. F. Gao and M. Nagai, Langmuir 22, 3936 (2006). doi: 10.1021/la053042f
    [6] J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, and S. Wu, Cryst. Growth. Des. 9, 3532 (2009). doi: 10.1021/cg900269a
    [7] Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008). doi: 10.1021/nl0803702
    [8] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001). doi: 10.1016/S0921-5107(00)00604-8
    [9] A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009). doi: 10.1088/0034-4885/72/12/126501
    [10] E. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B. 66, 165205 (2002). doi: 10.1103/PhysRevB.66.165205
    [11] D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004).
    [12] J. Luo, J. X. Liu, and W. X. Li, J. Phys. Chem. C 126, 9059 (2022). doi: 10.1021/acs.jpcc.2c02607
    [13] H. Shi, H. Yuan, Z. Li, W. Y. Wang, Z. Y. Li, and X. Shao, J. Phys. Chem. C 123, 13283 (2019). doi: 10.1021/acs.jpcc.9b01447
    [14] V. M. Sofianos, J. Lee, D. S. Silvester, P. K. Samanta, M. Paskevicius, N. J. English, and C. E. Buckley, J. Energy Chem. 56, 162 (2021). doi: 10.1016/j.jechem.2020.07.051
    [15] D. Thomas and J. Lander, J. Chem. Phys. 25, 1136 (1956). doi: 10.1063/1.1743165
    [16] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000). doi: 10.1103/PhysRevLett.85.1012
    [17] A. Janotti and C. G. Van de Walle, Nat. Mater. 6, 44 (2007). doi: 10.1038/nmat1795
    [18] J. Čížek, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, and W. Skorupa, J. Appl. Phys. 103, 053508 (2008). doi: 10.1063/1.2844479
    [19] H. Takenaka, D. J. Singh, Phys. Rev. B 75, 241102 (2007). doi: 10.1103/PhysRevB.75.241102
    [20] E. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. B 79, 165210 (2009). doi: 10.1103/PhysRevB.79.165210
    [21] C. F. Windisch Jr., G. J. Exarhos, C. Yao, and L. Q. Wang, J. Appl. Phys. 101, 123711 (2007). doi: 10.1063/1.2748719
    [22] M. Wang, G. Y. Yu, W. X. Ji, L. Li, W. P. Ding, and L. M. Peng, Chem. Phys. Lett. 627, 7 (2015). doi: 10.1016/j.cplett.2015.03.024
    [23] G. A. Shi, M. Saboktakin, M. Stavola, and S. Pearton, Appl. Phys. Lett. 85, 5601 (2004). doi: 10.1063/1.1832736
    [24] F. Lukáč, J. Čížek, M. Vlček, I. Procházka, M. Vlach, W. Anwand, G. Brauer, F. Traeger, D. Rogalla, and H. W. Becker, Mater. Sci. Forum. 733, 228 (2013). doi: 10.4028/www.scientific.net/MSF.733.228
    [25] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005). doi: 10.1021/ja0504690
    [26] X. X. Zou and Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015). doi: 10.1039/C4CS00448E
    [27] C. Chianella, R. Palombari, and A. Petricca, Electrochim. Acta 52, 369 (2006). doi: 10.1016/j.electacta.2006.05.015
    [28] M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. Lett. 96, 205504 (2006). doi: 10.1103/PhysRevLett.96.205504
    [29] J. Bang and K. J. Chang, Appl. Phys. Lett. 92, 132109 (2008). doi: 10.1063/1.2906379
    [30] X. W. Wu, W. Y. Li, S. Z. Sheng, L. Zhu, L. F. Yuan, J. W. Liu, S. Y. Jin, and Z. Zhang, Electrochem. Commun. 129, 107085 (2021). doi: 10.1016/j.elecom.2021.107085
    [31] C. P. Andrieux, A. Merz, and J. M. Saveant, J. Am. Chem. Soc. 107, 6097 (1985). doi: 10.1021/ja00307a045
    [32] A. Houmam, E. M. Hamed, and I. W. Still, J. Am. Chem. Soc. 125, 7258 (2003). doi: 10.1021/ja028542z
    [33] J. Q. Zhang, M. Z. An, and L. M. Chang, Electrochim. Acta 54, 2883 (2009). doi: 10.1016/j.electacta.2008.11.015
    [34] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edn., New York: John Wiley & Sons Inc., (2001).
    [35] B. Sieber, H. Liu, G. Piret, J. Laureyns, P. Roussel, B. Gelloz, S. Szunerits, and R. Boukherroub, J. Phys. Chem. C 113, 13643 (2009). doi: 10.1021/jp903504w
    [36] P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, J. Appl. Phys. 105, 083713 (2009). doi: 10.1063/1.3108543
    [37] J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and P. K. Chu, ACS Appl. Mater. Interfaces 2, 1780 (2010). doi: 10.1021/am100298p
    [38] Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys. 123, 134701 (2005). doi: 10.1063/1.2009731
    [39] R. Heinhold, A. Neiman, J. Kennedy, A. Markwitz, R. Reeves, and M. Allen, Phys. Rev. B 95, 054120 (2017). doi: 10.1103/PhysRevB.95.054120
    [40] X. Chen, Q. Xie, and J. Li, Ceram. Int. 46, 2309 (2020). doi: 10.1016/j.ceramint.2019.09.220
  • 加载中
图(5)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  178
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2022-07-27
  • 网络出版日期:  2022-08-02

目录

    /

    返回文章
    返回