Characterization of the Behavior of Hydrogen Species on ZnO Electrode during Electrolytic Reduction of Water
-
Abstract: The behavior of hydrogen production on ZnO electrode during the electrolytic reduction of water was investigated by cyclic voltammetry (CV) and cathode polarization experiments combined with in situ Raman and photoluminescence spectroscopy. CV experiments indicate that hydrogen species prefers to diffuse into the ZnO bulk at negative potentials and occupies oxygen vacancies and interstitial sites . Meanwhile, the H2O reduction is self-enhanced during the electroreduction process, as evidenced by the trace crossing of the CV curves and the chronoamperometric experiment. The influence of the H species on the ZnO electrode during the electrocatalytic processes was characterized by the in situ Raman and photoluminescence spectroscopies. These results help us to understand the hydrogen-related catalytic or electrocatalytic processes on ZnO surfaces.
-
Key words:
- Electrocatalysis /
- ZnO /
- Water reduction /
- Interstitial hydrogen
-
Figure 1. (a) Cyclic voltammograms (CVs) of ZnO electrode in 0.5 mol/L Na2SO4 aqueous electrolyte at different potential ranges. Insets show the photos of ZnO electrode at the indicated potentials. (b) The histogram of ZnO electrode shows the reduction charges per square centimeter (
Qreduction, blue columns) and the oxidation charges per square centimeter ( Qoxidation, red columns) at different scanning potential intervals during the CV processes. Inset shows the current-time plot of ZnO electrode in the range of 0.95 V to −1.05 V during the CV process. (c) The ratio of Qoxidation/ Qreduction on ZnO electrode is plotted as a function of the scanning potential range. -
[1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and Morkoç, J. Appl. Phys. 98, 11 (2005). doi: 10.1063/1.1992666 [2] C. Klingshirn, Phys. Status. Solidi (b) 244, 3027 (2007). doi: 10.1002/pssb.200743072 [3] N. Li, F. Jiao, X. L. Pan, Y. Ding, J. Y. Feng, and X. H. Bao, ACS Catal. 9, 960 (2018). [4] Y. Liu, Y. Li, and H. Zeng, J. Nanomater. 2013, 9 (2013). [5] Y. F. Gao and M. Nagai, Langmuir 22, 3936 (2006). doi: 10.1021/la053042f [6] J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, and S. Wu, Cryst. Growth. Des. 9, 3532 (2009). doi: 10.1021/cg900269a [7] Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008). doi: 10.1021/nl0803702 [8] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001). doi: 10.1016/S0921-5107(00)00604-8 [9] A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009). doi: 10.1088/0034-4885/72/12/126501 [10] E. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B. 66, 165205 (2002). doi: 10.1103/PhysRevB.66.165205 [11] D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004). [12] J. Luo, J. X. Liu, and W. X. Li, J. Phys. Chem. C 126, 9059 (2022). doi: 10.1021/acs.jpcc.2c02607 [13] H. Shi, H. Yuan, Z. Li, W. Y. Wang, Z. Y. Li, and X. Shao, J. Phys. Chem. C 123, 13283 (2019). doi: 10.1021/acs.jpcc.9b01447 [14] V. M. Sofianos, J. Lee, D. S. Silvester, P. K. Samanta, M. Paskevicius, N. J. English, and C. E. Buckley, J. Energy Chem. 56, 162 (2021). doi: 10.1016/j.jechem.2020.07.051 [15] D. Thomas and J. Lander, J. Chem. Phys. 25, 1136 (1956). doi: 10.1063/1.1743165 [16] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000). doi: 10.1103/PhysRevLett.85.1012 [17] A. Janotti and C. G. Van de Walle, Nat. Mater. 6, 44 (2007). doi: 10.1038/nmat1795 [18] J. Čížek, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, and W. Skorupa, J. Appl. Phys. 103, 053508 (2008). doi: 10.1063/1.2844479 [19] H. Takenaka, D. J. Singh, Phys. Rev. B 75, 241102 (2007). doi: 10.1103/PhysRevB.75.241102 [20] E. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. B 79, 165210 (2009). doi: 10.1103/PhysRevB.79.165210 [21] C. F. Windisch Jr., G. J. Exarhos, C. Yao, and L. Q. Wang, J. Appl. Phys. 101, 123711 (2007). doi: 10.1063/1.2748719 [22] M. Wang, G. Y. Yu, W. X. Ji, L. Li, W. P. Ding, and L. M. Peng, Chem. Phys. Lett. 627, 7 (2015). doi: 10.1016/j.cplett.2015.03.024 [23] G. A. Shi, M. Saboktakin, M. Stavola, and S. Pearton, Appl. Phys. Lett. 85, 5601 (2004). doi: 10.1063/1.1832736 [24] F. Lukáč, J. Čížek, M. Vlček, I. Procházka, M. Vlach, W. Anwand, G. Brauer, F. Traeger, D. Rogalla, and H. W. Becker, Mater. Sci. Forum. 733, 228 (2013). doi: 10.4028/www.scientific.net/MSF.733.228 [25] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005). doi: 10.1021/ja0504690 [26] X. X. Zou and Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015). doi: 10.1039/C4CS00448E [27] C. Chianella, R. Palombari, and A. Petricca, Electrochim. Acta 52, 369 (2006). doi: 10.1016/j.electacta.2006.05.015 [28] M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. Lett. 96, 205504 (2006). doi: 10.1103/PhysRevLett.96.205504 [29] J. Bang and K. J. Chang, Appl. Phys. Lett. 92, 132109 (2008). doi: 10.1063/1.2906379 [30] X. W. Wu, W. Y. Li, S. Z. Sheng, L. Zhu, L. F. Yuan, J. W. Liu, S. Y. Jin, and Z. Zhang, Electrochem. Commun. 129, 107085 (2021). doi: 10.1016/j.elecom.2021.107085 [31] C. P. Andrieux, A. Merz, and J. M. Saveant, J. Am. Chem. Soc. 107, 6097 (1985). doi: 10.1021/ja00307a045 [32] A. Houmam, E. M. Hamed, and I. W. Still, J. Am. Chem. Soc. 125, 7258 (2003). doi: 10.1021/ja028542z [33] J. Q. Zhang, M. Z. An, and L. M. Chang, Electrochim. Acta 54, 2883 (2009). doi: 10.1016/j.electacta.2008.11.015 [34] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edn., New York: John Wiley & Sons Inc., (2001). [35] B. Sieber, H. Liu, G. Piret, J. Laureyns, P. Roussel, B. Gelloz, S. Szunerits, and R. Boukherroub, J. Phys. Chem. C 113, 13643 (2009). doi: 10.1021/jp903504w [36] P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, J. Appl. Phys. 105, 083713 (2009). doi: 10.1063/1.3108543 [37] J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and P. K. Chu, ACS Appl. Mater. Interfaces 2, 1780 (2010). doi: 10.1021/am100298p [38] Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys. 123, 134701 (2005). doi: 10.1063/1.2009731 [39] R. Heinhold, A. Neiman, J. Kennedy, A. Markwitz, R. Reeves, and M. Allen, Phys. Rev. B 95, 054120 (2017). doi: 10.1103/PhysRevB.95.054120 [40] X. Chen, Q. Xie, and J. Li, Ceram. Int. 46, 2309 (2020). doi: 10.1016/j.ceramint.2019.09.220 -