Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation

Xuxu Ye Bingyu Liu Da Zhou Yan Xia Chen

Xuxu Ye, Bingyu Liu, Da Zhou, Yan Xia Chen. Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205095
Citation: Xuxu Ye, Bingyu Liu, Da Zhou, Yan Xia Chen. Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205095

doi: 10.1063/1674-0068/cjcp2205095

Restructuring of 4H Phase Au Nanowires and Its Catalytic Behavior toward CO Electro-Oxidation

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  TEM images of 4H Au nanowires with (a) low-magnification and (b) high-magnification, the Moiré pattern is highlighted by a white rectangle; (c) HR-TEM image of 4H Au NWs with SAED image inserted (taken from the one marked with a red circle in (b); (d) the XRD pattern of 4H Au NWs, the diffraction peaks from 4H phase crystal are marked in red, while those from FCC phase are shown in black.

    Figure  2.  10 cycles of cyclic voltammetric potential scans recorded during the electrochemical cleaning process for the 4H Au-H (the 4H Au NWs after acetic acid cleaning) in CO saturated 0.1 mol/L NaOH solution, with the upper potential limits of (a) 1.1 V and (b) 1.3 V, scan rate 50 mV/s, electrode rotation speed, 1600 r/min. The basic CVs of 4H Au-1.3 measured in Ar saturated 0.1 mol/L NaOH solutions with upper potential limits of (c) 1.1 V and (d) 1.3 V, the 4H Au-1.3 is the abbreviation of the 4H Au-H after electrochemical cleaning at 1.3 V.

    Figure  3.  The TEM image and XRD pattern of 4H Au NWs after different cleaning processes. The TEM images of 4H Au NWs as-synthesized (a, b); after HAc cleaning(c, d); after further electrochemical cleaning by cyclic voltammetry with an upper potential limit of 1.1 V (e, f) and 1.3 V(g, h). (i) The XRD pattern of 4H Au NWs after different cleaning processes; (j) the 4H phase content after different cleaning processes, the content is assessed by the intensity ratio of diffraction peaks (102)4H/(220)FCC as shown in FIG. 3(i).

    Figure  4.  (a) Polarization curves for CO electro-oxidation on 4H Au-H (magenta line+star), 4H Au-1.1 (blue line+rhombus), and 4H Au-1.3 (black line+circle) recorded in the positive-going scan in 0.1 mol/L NaOH solution, scan rate 20 mV/s, 1600 r/min, the inset is the Tafel plots of corresponding to kinetic current density (jk) as a function of applied potential; (b) the comparison of the kinetic current density (jk) for CO oxidation at the three samples at 0.35 V, the inset is the jk ratio of 4H Au-1.3 and 4H Au-1.1 at the range of 0.2–0.4 V.

    Figure  5.  The j-E curves of Pb-upd on 4H Au-1.3 (a), 4H Au-1.1 (c), and 4H Au-H (d) recorded in 0.1 mol/L NaOH+1 mmol/L Pb(NO3)2, scan rate: 50 mV/s, the stripping peaks of (111) facets and (110) facets are filled with blue and red, respectively; (b) the j-E curves of Pb-upd on the single-crystal electrode of Au(111) (blue), Au(110) (red) and Au(100) (black) in 0.1 mol/L NaOH+1 mmol/L Pb(NO3)2 solutions, scan rate: 50 mV/s [38].

    Table  I.   The surface area of 4H Au samples

    Samplejk / (mA/cm2) @ 0.35 VRHEECSA/cm2(111) facet/cm2(110) facet/cm2Qdefectb/μC
    4H Au-H0.03520.3400.1790.09739.8
    4H Au-1.10.03770.3420.1810.11110.7
    4H Au-1.30.2830.3630.1870.14813.7
    4H Au-1.3/4H Au-1.1a7.
    a The ratio of parameters of 4H Au-1.3 divided by 4H Au-1.1.
    b The integral charge of the defective sites (steps and terraces), as the Pb-upd current in the potential range of 0.25–0.35 V can be attributed to the Pb stripping from the defect sits [38, 47], we characterize the defect sites in terms of the integrated charge.
    下载: 导出CSV

    Table  II.   The jk of single crystal electrode @ 0.35 VRHE.

    Samplejk / (mA/cm2)
    Koper [41]4.530.8250.378
    Marković [53]0.007060.07300.0392
    下载: 导出CSV
  • [1] A. R. Tao, S. Habas, and P. Yang, Small 4, 310 (2008). doi: 10.1002/smll.200701295
    [2] Y. Xia, X. Xia, and H. C. Peng, J. Am. Chem. Soc. 137, 7947 (2015). doi: 10.1021/jacs.5b04641
    [3] Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, Angew. Chem. Int. Ed. Engl. 56, 60 (2017). doi: 10.1002/anie.201604731
    [4] M. Park, C. Liang, T. H. Lee, D. A. Agyeman, J. Yang, V. W. h. Lau, S. I. Choi, H. W. Jang, K. Cho, and Y. M. Kang, Adv. Energy Mater. 10, 1903225 (2020). doi: 10.1002/aenm.201903225
    [5] C. Wang, H. Yang, Y. Zhang, and Q. Wang, Angew. Chem. Int. Ed. 58, 6099 (2019). doi: 10.1002/anie.201902446
    [6] Z. Kong, Y. Maswadeh, J. A. Vargas, S. Shan, Z. P. Wu, H. Kareem, A. C. Leff, D. T. Tran, F. Chang, S. Yan, S. Nam, X. Zhao, J. M. Lee, J. Luo, S. Shastri, G. Yu, V. Petkov, and C. J. Zhong, J. Am. Chem. Soc. 142, 1287 (2019). doi: 10.1021/jacs.9b10239
    [7] W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, and H. Zhu, J. Am. Chem. Soc. 139, 8846 (2017). doi: 10.1021/jacs.7b01784
    [8] Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. A. Lu, Z. Xie, and L. Zheng, Nat. Commun. 8, 15131 (2017). doi: 10.1038/ncomms15131
    [9] J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, S. Sun, Joule 3, 124 (2019). doi: 10.1016/j.joule.2018.09.016
    [10] Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K. P. Ong, Y. A. Akimov, L. Wu, B. Li, J. Wu, Y. Huang, Q. Liu, C. E. Png, C. L. Gan, P. Yang, and H. Zhang, Nat. Commun. 6, 7684 (2015). doi: 10.1038/ncomms8684
    [11] Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, B. Li, Y. Zong, L. Gu, J. Wang, X. Wang, and H. Zhang, J. Am. Chem. Soc. 142, 12760 (2020). doi: 10.1021/jacs.0c04981
    [12] Q. Lu, A. L. Wang, Y. Gong, W. Hao, H. Cheng, J. Chen, B. Li, N. Yang, W. Niu, J. Wang, Y. Yu, X. Zhang, Y. Chen, Z. Fan, X. J. Wu, J. Chen, J. Luo, S. Li, L. Gu, and H. Zhang, Nat. Chem. 10, 456 (2018). doi: 10.1038/s41557-018-0012-0
    [13] Z. Fan, Y. Chen, Y. Zhu, J. Wang, B. Li, Y. Zong, Y. Han, and H. Zhang, Chem. Sci. 8, 795 (2017). doi: 10.1039/C6SC02953A
    [14] Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, and H. Zhang, Adv. Mater. 29, (2017). doi: 10.1002/adma.201701331
    [15] Z. Fan, Z. Luo, X. Huang, B. Li, Y. Chen, J. Wang, Y. Hu, and H. Zhang, J. Am. Chem. Soc. 138, 1414 (2016). doi: 10.1021/jacs.5b12715
    [16] Z. Fan, Z. Luo, Y. Chen, J. Wang, B. Li, Y. Zong, and H. Zhang, Small 12, 3908 (2016). doi: 10.1002/smll.201601787
    [17] S. Han, C. Cai, G. J. Xia, C. Sun, X. Shi, W. Zhou, J. Li, Y. G. Wang, and M. Gu, Inorg. Chem. 59, 14415 (2020). doi: 10.1021/acs.inorgchem.0c02209
    [18] P. Li, Y. Han, X. Zhou, Z. Fan, S. Xu, K. Cao, F. Meng, L. Gao, J. Song, H. Zhang, and Y. Lu, Matter 2, 658 (2020). doi: 10.1016/j.matt.2019.10.003
    [19] Q. Li, W. Niu, X. Liu, Y. Chen, X. Wu, X. Wen, Z. Wang, H. Zhang, and Z. Quan, J. Am. Chem. Soc. 140, 15783 (2018). doi: 10.1021/jacs.8b08647
    [20] Q. Wang, Z. L. Zhao, C. Cai, H. Li, and M. Gu, J. Mater. Chem. A 7, 23812 (2019). doi: 10.1039/C9TA01306G
    [21] P. Strasser, M. Gliech, S. Kuehl, and T. Moeller, Chem. Soc. Rev. 47, 715 (2018). doi: 10.1039/C7CS00759K
    [22] M. Oezaslan, M. Heggen, and P. Strasser, J. Am. Chem. Soc. 134, 514 (2012). doi: 10.1021/ja2088162
    [23] D. Wang, Y. Yu, J. Zhu, S. Liu, D. A. Muller, and H. D. Abruna, Nano Lett. 15, 1343 (2015). doi: 10.1021/nl504597j
    [24] D. Wang, Y. Yu, H. L. Xin, R. Hovden, P. Ercius, J. A. Mundy, H. Chen, J. H. Richard, D. A. Muller, F. J. DiSalvo, and H. D. Abruna, Nano Lett. 12, 5230 (2012). doi: 10.1021/nl302404g
    [25] J. Wei, R. Amirbeigiarab, Y. X. Chen, S. Sakong, A. Gross, and O. M. Magnussen, Angew. Chem. Int. Ed. Engl. 59, 6182 (2020). doi: 10.1002/anie.201913412
    [26] F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. Dunin-Borkowski, and P. Strasser, Nano Lett. 19, 6876 (2019). doi: 10.1021/acs.nanolett.9b02116
    [27] V. Beermann, M. E. Holtz, E. Padgett, J. F. de Araujo, D. A. Muller, and P. Strasser, Energy Environ. Sci. 12, 2476 (2019). doi: 10.1039/C9EE01185D
    [28] G. Niu, M. Zhou, X. Yang, J. Park, N. Lu, J. Wang, M. J. Kim, L. Wang, and Y. Xia, Nano Lett. 16, 3850 (2016). doi: 10.1021/acs.nanolett.6b01340
    [29] N. Zhang, L. Bu, S. Guo, J. Guo, and X. Huang, Nano Lett. 16, 5037 (2016). doi: 10.1021/acs.nanolett.6b01825
    [30] K. Li, X. Li, H. Huang, L. Luo, X. Li, X. Yan, C. Ma, R. Si, J. Yang, and J. Zeng, J. Am. Chem. Soc. 140, 16159 (2018). doi: 10.1021/jacs.8b08836
    [31] M. Asahi, S.-i. Yamazaki, N. Taguchi, and T. Ioroi, J. Electrochem. Soc. 166, F498 (2019). doi: 10.1149/2.0641908jes
    [32] Y. H. Chung, D. Y. Chung, N. Jung, and Y. E. Sung, J. Phys. Chem. Lett. 4, 1304 (2013). doi: 10.1021/jz400574f
    [33] K. Miyabayashi, H. Nishihara, and M. Miyake, Langmuir 30, 2936 (2014). doi: 10.1021/la402412k
    [34] Z. Niu and Y. Li, Chem. Mater. 26, 72 (2013). doi: 10.1021/cm4022479
    [35] L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, and S. Dong, J. Am. Chem. Soc. 140, 1142 (2018). doi: 10.1021/jacs.7b12353
    [36] Z. Fan and H. Zhang, Acc. Chem. Res. 49, 2841 (2016). doi: 10.1021/acs.accounts.6b00527
    [37] J. Hernández, J. Solla-Gullón, E. Herrero, A. Aldaz, and J. M. Feliu, J. Phys. Chem. C 111, 14078 (2007). doi: 10.1021/jp0749726
    [38] J. Hernández, J. Solla-Gullón, and E. Herrero, J. Electroanal. Chem. 574, 185 (2004). doi: 10.1016/j.jelechem.2003.10.039
    [39] K. Engelsmann, W. J. Lorenz, and E. Schmidt, J. Electroanal. Chemi. Interfacial Electrochem. 114, 1 (1980). doi: 10.1016/S0022-0728(80)80431-1
    [40] S. Han, G. J. Xia, C. Cai, Q. Wang, Y. G. Wang, M. Gu, and J. Li, Nat. Commun. 11, 552 (2022). doi: 10.1038/s41467-019-14212-z
    [41] P. Rodriguez, N. Garcia-Araez, and M. T. M. Koper, Phys. Chem. Chem. Phys. 12, 9373 (2010). doi: 10.1039/b926365a
    [42] P. Rodriguez, N. Garcia-Araez, A. Koverga, S. Frank, and M. T. M. Koper, Langmuir 26, 12425 (2010). doi: 10.1021/la1014048
    [43] L. Lu, B. Lou, S. Zou, H. Kobayashi, J. Liu, L. Xiao, and J. Fan, ACS Catal. 8, 8484 (2018). doi: 10.1021/acscatal.8b01627
    [44] Q. Fan, K. Liu, Z. Liu, H. Liu, L. Zhang, P. Zhong, and C. Gao, Part. Part. Syst. Charact. 34, 159 (2017). doi: 10.1002/ppsc.201700075
    [45] I. Chakraborty, D. Carvalho, S. N. Shirodkar, S. Lahiri, S. Bhattacharyya, R. Banerjee, U. Waghmare, and P. Ayyub, J. Phys.: Condens. Matter. 23, 325401 (2011). doi: 10.1088/0953-8984/23/32/325401
    [46] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009). doi: 10.1002/anie.200802248
    [47] C. Jeyabharathi, M. Zander, and F. Scholz, Electroanal. Chem. 819, 159 (2018). doi: 10.1016/j.jelechem.2017.10.011
    [48] D. Chen, Q. Tao, L. W. Liao, S. X. Liu, Y. X. Chen, and S. Ye, Electrocatalysis 2, 207 (2011). doi: 10.1007/s12678-011-0054-1
    [49] H. Yang, Y. Tang, and S. Zou, Electrochem. Commun. 38, 134 (2014). doi: 10.1016/j.elecom.2013.11.019
    [50] R. J. Nichols, O. M. Magnussen, J. Hotlos, T. Twomey, R. J. Behm, and D. M. Kolb, J. Electroanal. Chem. Interfacial Electrochem. 290, 21 (1990). doi: 10.1016/0022-0728(90)87417-I
    [51] M. A. Schneeweiss and D. M. Kolb, Solid State Ionics. 171, 94 (1997). doi: 10.1016/S0167-2738(96)00587-5
    [52] D. Dickertmann, J. W. Schultze, and K. J. Vetter, J. Electroanal. Chem. Interfacial Electrochem. 55, 429 (1974). doi: 10.1016/S0022-0728(74)80437-7
    [53] B. B. Blizanac, M. Arenz, P. N. Ross, and N. M. Marković, J. Am. Chem. Soc. 126, 10130 (2004). doi: 10.1021/ja049038s
    [54] A. A. Koverga, S. Frank, and M. T. M. Koper, Electrochim. Acta 101, 244 (2013). doi: 10.1016/j.electacta.2012.12.061
    [55] P. Rodriguez, J. M. Feliu, and M. T. M. Koper, Electrochem. Commun. 11, 1105 (2009). doi: 10.1016/j.elecom.2009.03.018
    [56] P. Rodríguez, A. A. Koverga, and M. T. M. Koper, Angew. Chem. Int. Ed. 49, 1241 (2010). doi: 10.1002/anie.200905387
  • CJCP2205095SP.docx
  • 加载中
图(5) / 表(2)
  • 文章访问数:  457
  • HTML全文浏览量:  169
  • PDF下载量:  23
  • 被引次数: 0
  • 收稿日期:  2022-05-31
  • 录用日期:  2022-07-16
  • 网络出版日期:  2022-07-22