Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural

Xiaojun Wang Ni Lu Yuanyi Fu Chang Lu Meili Guan Kunhua Wang Hao Yu

Xiaojun Wang, Ni Lu, Yuanyi Fu, Chang Lu, Meili Guan, Kunhua Wang, Hao Yu. Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205093
Citation: Xiaojun Wang, Ni Lu, Yuanyi Fu, Chang Lu, Meili Guan, Kunhua Wang, Hao Yu. Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2205093

doi: 10.1063/1674-0068/cjcp2205093

Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  XRD patterns of pristine WOy-ZrO2 catalyst and NbOx/WOy-ZrO2 catalysts with niobium loadings ranging from 1 wt% to 5 wt%.

    Figure  2.  SEM image (a) and the corresponding elemental mapping of Zr (b), O (c), W (d), Nb, and (e) 1% NbOx/WOy-ZrO2 catalyst. TEM image (f), the corresponding HRTEM characterization (g, h), and a SAED pattern (i) of 1% NbOx/WOy-ZrO2 catalyst.

    Figure  3.  NH3-TPD spectra of the WOy-ZrO2, 1% NbOx/WOy-ZrO2, and 5% NbOx/WOy-ZrO2 catalyst.

    Figure  4.  XPS spectra of the NbOx /WOy -ZrO2 catalysts. (a) Zr 3d, (b) O 1s, (c) W 4f, and (d) Nb 3d.

    Table  I.   Influence of the reaction temperature on the fructose conversion under NbOx /WOy -ZrO2 catalysts with different ratios of Nb loading at different temperature. Experimental condition: reaction timef Nb loading. Experimental condition: reaction time = 30 min.

    Catalysts Conversion/% Yield/% Selectivity/%
    160 °C 180 °C 200 °C 160 °C 180 °C 200 °C 160 °C 180 °C 200 °C
    WOy-ZrO2 92 96 98 15.1 24.3 25.3 16.5 25.3 25.8
    1%NbOx/WOy-ZrO2 97 99 100 40.3 50.1 50.9 41.6 50.7 50.9
    2%NbOx/WOy-ZrO2 96 98 99 39.9 46.7 47.3 41.6 47.6 47.8
    3%NbOx/WOy-ZrO2 95 97 98 37.7 42.6 33.5 39.7 44.0 34.2
    4%NbOx/WOy-ZrO2 94 96 98 33.7 35.2 36.4 35.9 36.6 37.2
    5%NbOx/WOy-ZrO2 93 95 97 18.0 25.2 24.7 19.4 26.5 28.2
    下载: 导出CSV

    Table  II.   Influence of the reaction time on the fructose conversion under NbOx /WOy -ZrO2 catalysts with different ratios of Nb loading for different reaction time. Experimental conditions: temperature = 180 °C, 10 mg/mL of fructose.

    Catalysts Conversion/%
    10 min 20 min 30 min 40 min 50 min 60 min
    WOy-ZrO2 80 90 88 85 81 78
    1%NbOx/WOy-ZrO2 93 96 95 94 93 90
    2%NbOx/WOy-ZrO2 96 99 97 97 96 95
    3%NbOx/WOy-ZrO2 97 99 98 98 97 96
    4%NbOx/WOy-ZrO2 97 99 98 99 98 97
    5%NbOx/WOy-ZrO2 98 99 99 99 99 97
    下载: 导出CSV

    Table  III.   Influence of the reaction time on 5-HMF yield, and selectivity under NbOx /WOy -ZrO2 catalysts with different ratios of Nb loading for different reaction time. Experimental conditions: temperature = 180 °C, 10 mg/mL of fructose.

    Catalysts Yield/% Selectivity/%
    10 min 20 min 30 min 40 min 50 min 60 min 10 min 20 min 30 min 40 min 50 min 60 min
    WOy-ZrO2 22.1 23.3 24.3 23.0 22.2 21.3 27.7 25.1 25.3 23.7 22.8 21.7
    1%NbOx/WOy-ZrO2 30.7 41.3 50.1 46.3 39.6 32.9 34.1 43.0 50.7 46.8 40.0 33.2
    2%NbOx/WOy-ZrO2 29.9 36.0 46.7 39.3 33.3 30.1 34.0 37.9 48.1 40.1 34.0 30.4
    3%NbOx/WOy-ZrO2 26.5 29.9 37.6 32.3 30.8 28.7 31.2 31.8 38.8 33.0 31.1 29.0
    4%NbOx/WOy-ZrO2 18.7 20.4 25.2 22.1 21.9 19.7 23.1 22.0 26.2 22.8 22.3 19.9
    5%NbOx/WOy-ZrO2 15.0 17.2 20.9 18.4 14.1 11.5 19.3 19.1 22.0 19.1 14.5 11.8
    下载: 导出CSV
  • [1] P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012). doi: 10.1039/C1CS15147A
    [2] L. D. Schmidt and P. J. Dauenhauer, Nature 447, 914 (2007). doi: 10.1038/447914a
    [3] S. P. Teong, G. S. Yi, and Y. G. Zhang, Green Chem. 16, 2015 (2014). doi: 10.1039/c3gc42018c
    [4] M. Jakob and J. Hilaire, Nature 517, 150 (2015). doi: 10.1038/517150a
    [5] R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, and J. Dumesic, Green Chem. 14, 1413 (2012). doi: 10.1039/c2gc35039d
    [6] Z. Z. Yang, W. Qi, R. L. Huang, J. Fang, R. X. Su, and Z. M. He, Chem. Eng. J. 296, 209 (2016). doi: 10.1016/j.cej.2016.03.084
    [7] T. D. Matson, K. Barta, A. V. Iretskii, and P. C. Ford, J. Am. Chem. Soc. 133, 14090 (2011). doi: 10.1021/ja205436c
    [8] Z. Y. Han, Y. Y. Wu, H. Yu, and S. X. Zhou, J. Magnes. Alloy. 10, 1617 (2022). doi: 10.1016/j.jma.2021.03.002
    [9] X. X. Liu, J. F. Xiao, H. Ding, W. Z. Zhong, Q. Xu, S. P. Su, and D. L. Yin, Chem. Eng. J. 283, 1315 (2016). doi: 10.1016/j.cej.2015.08.022
    [10] X. W. Han, C. Q. Li, X. H. Liu, Q. N. Xia, and Y. Q. Wang, Green Chem. 19, 996 (2017). doi: 10.1039/C6GC03304K
    [11] G. S. Svenningsen, R. Kumar, C. E. Wyman, and P. Christopher, Acs Catal. 8, 5591 (2018). doi: 10.1021/acscatal.8b01197
    [12] B. Wozniak, S. Tin, and J. G. de Vries, Chem. Sci. 10, 6024 (2019). doi: 10.1039/C9SC01309A
    [13] A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007). doi: 10.1021/cr050989d
    [14] M. A. Mellmer, C. Sanpitakseree, B. Demir, K. W. Ma, W. A. Elliott, P. Bai, R. L. Johnson, T. W. Walker, B. H. Shanks, R. M. Rioux, M. Neurock, and J. A. Dumesic, Nat. Commun. 10, 1132 (2019). doi: 10.1038/s41467-019-09090-4
    [15] Q. Sun, S. Wang, B. Aguila, X. J. Meng, S. Q. Ma, and F. S. Xiao, Nat. Commun. 9, 3236 (2018). doi: 10.1038/s41467-018-05534-5
    [16] Y. S. Qu, C. P. Huang, J. Zhang, and B. H. Chen, Bioresour. Technol. 106, 170 (2012). doi: 10.1016/j.biortech.2011.11.069
    [17] A. Chinnappan, A. H. Jadhav, H. Kim, and W. J. Chung, Chem. Eng. J. 237, 95 (2014). doi: 10.1016/j.cej.2013.09.106
    [18] L. F. Zhu, J. H. Dai, M. Y. Liu, D. Y. Tang, S. Q. Liu, and C. W. Hu, Chemsuschem 9, 2174 (2016). doi: 10.1002/cssc.201600503
    [19] I. K. M. Yu, D. C. W. Tsang, S. S. Chen, L. Wang, A. J. Hunt, J. Sherwood, K. D. Vigier, F. Jerome, Y. S. Ok, and C. S. Poon, Bioresource Technol. 245, 456 (2017). doi: 10.1016/j.biortech.2017.08.170
    [20] Y. L. Zhang, Y. Chen, J. M. Pan, M. Liu, P. Jin, and Y. S. Yan, Chem. Eng. J. 313, 1593 (2017). doi: 10.1016/j.cej.2016.11.033
    [21] Q. B. Wu, Y. N. Yan, Q. Zhang, J. H. Lu, Z. J. Yang, Y. H. Zhang, and Y. Tang, Chemsuschem 6, 820 (2013). doi: 10.1002/cssc.201300004
    [22] Y. Shen, Y. F. Xu, J. K. Sun, B. Wang, F. Xu, and R. C. Sun, Catal. Commun. 50, 17 (2014). doi: 10.1016/j.catcom.2014.02.019
    [23] A. Ranoux, K. Djanashvili, I. W. C. E. Arends, and U. Hanefeld, Acs Catal. 3, 760 (2013). doi: 10.1021/cs400099a
    [24] V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N. S. Marinkovic, A. I. Frenkel, S. I. Sandler, and D. G. Vlachos, J. Am. Chem. Soc. 135, 3997 (2013). doi: 10.1021/ja3122763
    [25] L. T. Mika, E. Csefalvay, and A. Nemeth, Chem. Rev. 118, 505 (2018). doi: 10.1021/acs.chemrev.7b00395
    [26] W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, and C. J. Kiely, Nat. Chem. 1, 722 (2009). doi: 10.1038/nchem.433
    [27] R. Kourieh, S. Bennici, M. Marzo, A. Gervasini, and A. Auroux, Catal. Commun. 19, 119 (2012). doi: 10.1016/j.catcom.2011.12.030
    [28] T. Yamamoto, A. Teramachi, A. Orita, A. Kurimoto, T. Motoi, and T. Tanaka, J. Phys. Chem. C 120, 19705 (2016). doi: 10.1021/acs.jpcc.6b05388
    [29] Y. M. Zhou, L. J. Zhang, and S. Y. Tao, Acs Appl. Nano Mater. 2, 5125 (2019). doi: 10.1021/acsanm.9b01008
    [30] N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, and M. S. Wong, J. Am. Chem. Soc. 132, 13462 (2010). doi: 10.1021/ja105519y
    [31] Y. Ji, S. Bai, D. Xu, D. Qian, Z. Wu, Y. Song, R. Pace, M. Crocker, K. Wilson, A. Lee, D. Harris, and D. Scapens, Appl. Catal. B: Environ. 264, 118499 (2020). doi: 10.1016/j.apcatb.2019.118499
    [32] M. L. Hernández, J. A. Montoya, I. Hernández, M. Viniegra, M. E. Llanos, V. Garibay, and P. D. Angel, Micropor. Mesopor. Mat. 89, 186 (2006). doi: 10.1016/j.micromeso.2005.10.005
    [33] J. R. Sohn, S. H. Lee, and J. S. Lim, Catal. Today 116, 143 (2006). doi: 10.1016/j.cattod.2006.01.023
    [34] Y. H. Wang, W. G. Gao, H. Wang, Y. E. Zheng, W. Na, and K. Z. Li, RSC Adv. 7, 8709 (2017). doi: 10.1039/C6RA28305E
    [35] Y. Wang, Y. Liu, L. Yang, R. Ruan, P. Wen, and Y. Wan, Synth. React. Inorg. Met. Nano-Metal Chem. 46, 177 (2015).
    [36] F. Digregorio, J. Catal. 225, 45 (2004). doi: 10.1016/j.jcat.2004.03.023
    [37] N. Z. Yang, R. T. Guo, W. G. Pan, Q. L. Chen, Q. S. Wang, C. Z. Lu, and S. X. Wang, Appl. Surf. Sci. 378, 513 (2016). doi: 10.1016/j.apsusc.2016.03.211
    [38] J. He, J. W. Chen, L. B. Ren, Y. Wang, C. Teng, M. Hong, J. Zhao, and B. W. Jiang, Acs Appl. Mater. Inter. 6, 2718 (2014). doi: 10.1021/am405202d
    [39] W. Chen, I. A. W. Filot, R. Pestman, and E. J. M. Hensen, ACS Catal. 7, 8061 (2017). doi: 10.1021/acscatal.7b02758
    [40] H. D. Xu, Y. Wang, Y. Cao, Z. T. Fang, T. Lin, M. C. Gong, and Y. Q. Chen, Chem. Eng. J. 240, 62 (2014). doi: 10.1016/j.cej.2013.11.053
    [41] B. Guo, L. Ye, G. F. Tang, L. Zhang, B. Yue, S. C. E. Tsang, and H. Y. He, Chin. J. Chem. 35, 1529 (2017). doi: 10.1002/cjoc.201700084
    [42] T. Ji, Z. Li, C. Liu, X. H. Lu, L. C. Li, and J. H. Zhu, Appl. Catal. B: Environ. 243, 741 (2019). doi: 10.1016/j.apcatb.2018.11.013
    [43] B. S. Solanki and C. V. Rode, Green Chem. 21, 6390 (2019). doi: 10.1039/C9GC03091C
    [44] F. Jiang, S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y. Xu, and X. Liu, Acs Catal. 10, 11493 (2020). doi: 10.1021/acscatal.0c03324
    [45] W. Li, Y. Liu, M. Mu, F. Ding, Z. Liu, X. Guo, and C. Song, Appl. Catal. B: Environ. 254, 531 (2019). doi: 10.1016/j.apcatb.2019.05.028
    [46] K. H. Wang, L. Wang, Y. Y. Liu, Y. H. Song, Y. C. Yin, J. S. Yao, J. N. Yang, J. J. Wang, L. Z. Feng, Q. Zhang, Q. Zhang, and H. B. Yao, Adv. Opt. Mater. 9, (2020).
    [47] M. Sun, S. Wang, Y. Li, H. Xu, and Y. Chen, Appl. Surf. Sci. 402, 323 (2017). doi: 10.1016/j.apsusc.2016.12.241
    [48] J. He and Y. N. Fan, Acta Phys. -Chim. Sin. 27, 2416 (2011). doi: 10.3866/PKU.WHXB20110934
    [49] G. Qiu, X. C. Wang, C. P. Huang, Y. X. Li, and B. H. Chen, RSC Adv. 8, 32423 (2018). doi: 10.1039/C8RA05940C
    [50] X. H. Qi, H. X. Guo, and L. Y. Li, Ind. Eng. Chem. Res. 50, 7985 (2011). doi: 10.1021/ie200488k
    [51] I. Jiménez-Morales, J. Santamaría-González, A. Jiménez-López, and P. Maireles-Torres, Fuel 118, 265 (2014). doi: 10.1016/j.fuel.2013.10.079
    [52] Y. Zhang, J. Pan, Y. Shen, W. Shi, C. Liu, and L. Yu, ACS Sustain. Chem. Eng. 3, 871 (2015). doi: 10.1021/sc5008412
    [53] Y. N. Li, J. Q. Wang, L. N. He, Z. Z. Yang, A. H. Liu, B. Yu, and C. R. Luan, Green Chem. 14, 2752 (2012). doi: 10.1039/c2gc35845j
    [54] R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Chem. Rev. 113, 1499 (2013). doi: 10.1021/cr300182k
    [55] C. D. Jin, N. Xiang, X. Zhu, E. Shuang, K. C. Sheng, and X. M. Zhang, Appl. Catal. B: Environ. 285, 119799 (2021). doi: 10.1016/j.apcatb.2020.119799
    [56] H. Kimura, M. Nakahara, and N. Matubayasi, J. Phys. Chem. A 117, 2102 (2013). doi: 10.1021/jp312002h
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  157
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2022-09-15
  • 网络出版日期:  2022-09-20

目录

    /

    返回文章
    返回