Improved Surface Acidity of Niobium Doped Tungstated-Zirconia Solid Acid Catalyst over Production of 5-Hydroxymethylfurfural
-
Abstract: The 5-hydroxymethylfurfural (5-HMF) acts as an important chemical intermediate to bridge the biomass resources and industrial applications, which shows the potential for green development. However, the performance of biomass materials conversion to 5-HMF is still limited in the green solvent. Herein, an effective approach is reported to prepare the highly efficient solid acid catalysts, NbOx /WOy -ZrO2, to improve fructose conversion. It is found that the introduction of Nb results in the generation of the niobium oxides, which improves acid sites and tunes the ratios of Brønsted acid and Lewis acid on the surface of the WOy -ZrO2 support. With the acidity improvement and increasing acid sites of the NbOx /WOy -ZrO2, the highest fructose conversion is 99% in water. Meanwhile, the 5-HMF yield and the selectivity are also as high as 50.1% and 50.7% under the reaction temperature of 180 °C for a short reaction time of 30 min. The proposed NbOx /WOy -ZrO2 catalyst strategy will not only open a new way for designing the solid acid catalysts to achieve high performance of the 5-HMF in the water, but also promote the green production of biomass and sustainable development in the future.
-
Key words:
- Niobium oxide /
- Tungsten zirconia solid acid /
- Fructose /
- 5-Hydroxymethylfurfural /
- Acid site
-
Table I. Influence of the reaction temperature on the fructose conversion under NbOx
/WOy -ZrO2 catalysts with different ratios of Nb loading at different temperature. Experimental condition: reaction timef Nb loading. Experimental condition: reaction time = 30 min. Catalysts Conversion/% Yield/% Selectivity/% 160 °C 180 °C 200 °C 160 °C 180 °C 200 °C 160 °C 180 °C 200 °C WOy-ZrO2 92 96 98 15.1 24.3 25.3 16.5 25.3 25.8 1%NbOx /WOy-ZrO2 97 99 100 40.3 50.1 50.9 41.6 50.7 50.9 2%NbOx /WOy-ZrO2 96 98 99 39.9 46.7 47.3 41.6 47.6 47.8 3%NbOx /WOy-ZrO2 95 97 98 37.7 42.6 33.5 39.7 44.0 34.2 4%NbOx /WOy-ZrO2 94 96 98 33.7 35.2 36.4 35.9 36.6 37.2 5%NbOx /WOy-ZrO2 93 95 97 18.0 25.2 24.7 19.4 26.5 28.2 Table II. Influence of the reaction time on the fructose conversion under NbOx
/WOy -ZrO2 catalysts with different ratios of Nb loading for different reaction time. Experimental conditions: temperature = 180 °C, 10 mg/mL of fructose. Catalysts Conversion/% 10 min 20 min 30 min 40 min 50 min 60 min WOy-ZrO2 80 90 88 85 81 78 1%NbOx /WOy-ZrO2 93 96 95 94 93 90 2%NbOx /WOy-ZrO2 96 99 97 97 96 95 3%NbOx /WOy-ZrO2 97 99 98 98 97 96 4%NbOx /WOy-ZrO2 97 99 98 99 98 97 5%NbOx /WOy-ZrO2 98 99 99 99 99 97 Table III. Influence of the reaction time on 5-HMF yield, and selectivity under NbOx
/WOy -ZrO2 catalysts with different ratios of Nb loading for different reaction time. Experimental conditions: temperature = 180 °C, 10 mg/mL of fructose. Catalysts Yield/% Selectivity/% 10 min 20 min 30 min 40 min 50 min 60 min 10 min 20 min 30 min 40 min 50 min 60 min WOy-ZrO2 22.1 23.3 24.3 23.0 22.2 21.3 27.7 25.1 25.3 23.7 22.8 21.7 1%NbOx /WOy-ZrO2 30.7 41.3 50.1 46.3 39.6 32.9 34.1 43.0 50.7 46.8 40.0 33.2 2%NbOx /WOy-ZrO2 29.9 36.0 46.7 39.3 33.3 30.1 34.0 37.9 48.1 40.1 34.0 30.4 3%NbOx /WOy-ZrO2 26.5 29.9 37.6 32.3 30.8 28.7 31.2 31.8 38.8 33.0 31.1 29.0 4%NbOx /WOy-ZrO2 18.7 20.4 25.2 22.1 21.9 19.7 23.1 22.0 26.2 22.8 22.3 19.9 5%NbOx /WOy-ZrO2 15.0 17.2 20.9 18.4 14.1 11.5 19.3 19.1 22.0 19.1 14.5 11.8 -
[1] P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012). doi: 10.1039/C1CS15147A [2] L. D. Schmidt and P. J. Dauenhauer, Nature 447, 914 (2007). doi: 10.1038/447914a [3] S. P. Teong, G. S. Yi, and Y. G. Zhang, Green Chem. 16, 2015 (2014). doi: 10.1039/c3gc42018c [4] M. Jakob and J. Hilaire, Nature 517, 150 (2015). doi: 10.1038/517150a [5] R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, and J. Dumesic, Green Chem. 14, 1413 (2012). doi: 10.1039/c2gc35039d [6] Z. Z. Yang, W. Qi, R. L. Huang, J. Fang, R. X. Su, and Z. M. He, Chem. Eng. J. 296, 209 (2016). doi: 10.1016/j.cej.2016.03.084 [7] T. D. Matson, K. Barta, A. V. Iretskii, and P. C. Ford, J. Am. Chem. Soc. 133, 14090 (2011). doi: 10.1021/ja205436c [8] Z. Y. Han, Y. Y. Wu, H. Yu, and S. X. Zhou, J. Magnes. Alloy. 10, 1617 (2022). doi: 10.1016/j.jma.2021.03.002 [9] X. X. Liu, J. F. Xiao, H. Ding, W. Z. Zhong, Q. Xu, S. P. Su, and D. L. Yin, Chem. Eng. J. 283, 1315 (2016). doi: 10.1016/j.cej.2015.08.022 [10] X. W. Han, C. Q. Li, X. H. Liu, Q. N. Xia, and Y. Q. Wang, Green Chem. 19, 996 (2017). doi: 10.1039/C6GC03304K [11] G. S. Svenningsen, R. Kumar, C. E. Wyman, and P. Christopher, Acs Catal. 8, 5591 (2018). doi: 10.1021/acscatal.8b01197 [12] B. Wozniak, S. Tin, and J. G. de Vries, Chem. Sci. 10, 6024 (2019). doi: 10.1039/C9SC01309A [13] A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007). doi: 10.1021/cr050989d [14] M. A. Mellmer, C. Sanpitakseree, B. Demir, K. W. Ma, W. A. Elliott, P. Bai, R. L. Johnson, T. W. Walker, B. H. Shanks, R. M. Rioux, M. Neurock, and J. A. Dumesic, Nat. Commun. 10, 1132 (2019). doi: 10.1038/s41467-019-09090-4 [15] Q. Sun, S. Wang, B. Aguila, X. J. Meng, S. Q. Ma, and F. S. Xiao, Nat. Commun. 9, 3236 (2018). doi: 10.1038/s41467-018-05534-5 [16] Y. S. Qu, C. P. Huang, J. Zhang, and B. H. Chen, Bioresour. Technol. 106, 170 (2012). doi: 10.1016/j.biortech.2011.11.069 [17] A. Chinnappan, A. H. Jadhav, H. Kim, and W. J. Chung, Chem. Eng. J. 237, 95 (2014). doi: 10.1016/j.cej.2013.09.106 [18] L. F. Zhu, J. H. Dai, M. Y. Liu, D. Y. Tang, S. Q. Liu, and C. W. Hu, Chemsuschem 9, 2174 (2016). doi: 10.1002/cssc.201600503 [19] I. K. M. Yu, D. C. W. Tsang, S. S. Chen, L. Wang, A. J. Hunt, J. Sherwood, K. D. Vigier, F. Jerome, Y. S. Ok, and C. S. Poon, Bioresource Technol. 245, 456 (2017). doi: 10.1016/j.biortech.2017.08.170 [20] Y. L. Zhang, Y. Chen, J. M. Pan, M. Liu, P. Jin, and Y. S. Yan, Chem. Eng. J. 313, 1593 (2017). doi: 10.1016/j.cej.2016.11.033 [21] Q. B. Wu, Y. N. Yan, Q. Zhang, J. H. Lu, Z. J. Yang, Y. H. Zhang, and Y. Tang, Chemsuschem 6, 820 (2013). doi: 10.1002/cssc.201300004 [22] Y. Shen, Y. F. Xu, J. K. Sun, B. Wang, F. Xu, and R. C. Sun, Catal. Commun. 50, 17 (2014). doi: 10.1016/j.catcom.2014.02.019 [23] A. Ranoux, K. Djanashvili, I. W. C. E. Arends, and U. Hanefeld, Acs Catal. 3, 760 (2013). doi: 10.1021/cs400099a [24] V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N. S. Marinkovic, A. I. Frenkel, S. I. Sandler, and D. G. Vlachos, J. Am. Chem. Soc. 135, 3997 (2013). doi: 10.1021/ja3122763 [25] L. T. Mika, E. Csefalvay, and A. Nemeth, Chem. Rev. 118, 505 (2018). doi: 10.1021/acs.chemrev.7b00395 [26] W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, and C. J. Kiely, Nat. Chem. 1, 722 (2009). doi: 10.1038/nchem.433 [27] R. Kourieh, S. Bennici, M. Marzo, A. Gervasini, and A. Auroux, Catal. Commun. 19, 119 (2012). doi: 10.1016/j.catcom.2011.12.030 [28] T. Yamamoto, A. Teramachi, A. Orita, A. Kurimoto, T. Motoi, and T. Tanaka, J. Phys. Chem. C 120, 19705 (2016). doi: 10.1021/acs.jpcc.6b05388 [29] Y. M. Zhou, L. J. Zhang, and S. Y. Tao, Acs Appl. Nano Mater. 2, 5125 (2019). doi: 10.1021/acsanm.9b01008 [30] N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, and M. S. Wong, J. Am. Chem. Soc. 132, 13462 (2010). doi: 10.1021/ja105519y [31] Y. Ji, S. Bai, D. Xu, D. Qian, Z. Wu, Y. Song, R. Pace, M. Crocker, K. Wilson, A. Lee, D. Harris, and D. Scapens, Appl. Catal. B: Environ. 264, 118499 (2020). doi: 10.1016/j.apcatb.2019.118499 [32] M. L. Hernández, J. A. Montoya, I. Hernández, M. Viniegra, M. E. Llanos, V. Garibay, and P. D. Angel, Micropor. Mesopor. Mat. 89, 186 (2006). doi: 10.1016/j.micromeso.2005.10.005 [33] J. R. Sohn, S. H. Lee, and J. S. Lim, Catal. Today 116, 143 (2006). doi: 10.1016/j.cattod.2006.01.023 [34] Y. H. Wang, W. G. Gao, H. Wang, Y. E. Zheng, W. Na, and K. Z. Li, RSC Adv. 7, 8709 (2017). doi: 10.1039/C6RA28305E [35] Y. Wang, Y. Liu, L. Yang, R. Ruan, P. Wen, and Y. Wan, Synth. React. Inorg. Met. Nano-Metal Chem. 46, 177 (2015). [36] F. Digregorio, J. Catal. 225, 45 (2004). doi: 10.1016/j.jcat.2004.03.023 [37] N. Z. Yang, R. T. Guo, W. G. Pan, Q. L. Chen, Q. S. Wang, C. Z. Lu, and S. X. Wang, Appl. Surf. Sci. 378, 513 (2016). doi: 10.1016/j.apsusc.2016.03.211 [38] J. He, J. W. Chen, L. B. Ren, Y. Wang, C. Teng, M. Hong, J. Zhao, and B. W. Jiang, Acs Appl. Mater. Inter. 6, 2718 (2014). doi: 10.1021/am405202d [39] W. Chen, I. A. W. Filot, R. Pestman, and E. J. M. Hensen, ACS Catal. 7, 8061 (2017). doi: 10.1021/acscatal.7b02758 [40] H. D. Xu, Y. Wang, Y. Cao, Z. T. Fang, T. Lin, M. C. Gong, and Y. Q. Chen, Chem. Eng. J. 240, 62 (2014). doi: 10.1016/j.cej.2013.11.053 [41] B. Guo, L. Ye, G. F. Tang, L. Zhang, B. Yue, S. C. E. Tsang, and H. Y. He, Chin. J. Chem. 35, 1529 (2017). doi: 10.1002/cjoc.201700084 [42] T. Ji, Z. Li, C. Liu, X. H. Lu, L. C. Li, and J. H. Zhu, Appl. Catal. B: Environ. 243, 741 (2019). doi: 10.1016/j.apcatb.2018.11.013 [43] B. S. Solanki and C. V. Rode, Green Chem. 21, 6390 (2019). doi: 10.1039/C9GC03091C [44] F. Jiang, S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y. Xu, and X. Liu, Acs Catal. 10, 11493 (2020). doi: 10.1021/acscatal.0c03324 [45] W. Li, Y. Liu, M. Mu, F. Ding, Z. Liu, X. Guo, and C. Song, Appl. Catal. B: Environ. 254, 531 (2019). doi: 10.1016/j.apcatb.2019.05.028 [46] K. H. Wang, L. Wang, Y. Y. Liu, Y. H. Song, Y. C. Yin, J. S. Yao, J. N. Yang, J. J. Wang, L. Z. Feng, Q. Zhang, Q. Zhang, and H. B. Yao, Adv. Opt. Mater. 9, (2020). [47] M. Sun, S. Wang, Y. Li, H. Xu, and Y. Chen, Appl. Surf. Sci. 402, 323 (2017). doi: 10.1016/j.apsusc.2016.12.241 [48] J. He and Y. N. Fan, Acta Phys. -Chim. Sin. 27, 2416 (2011). doi: 10.3866/PKU.WHXB20110934 [49] G. Qiu, X. C. Wang, C. P. Huang, Y. X. Li, and B. H. Chen, RSC Adv. 8, 32423 (2018). doi: 10.1039/C8RA05940C [50] X. H. Qi, H. X. Guo, and L. Y. Li, Ind. Eng. Chem. Res. 50, 7985 (2011). doi: 10.1021/ie200488k [51] I. Jiménez-Morales, J. Santamaría-González, A. Jiménez-López, and P. Maireles-Torres, Fuel 118, 265 (2014). doi: 10.1016/j.fuel.2013.10.079 [52] Y. Zhang, J. Pan, Y. Shen, W. Shi, C. Liu, and L. Yu, ACS Sustain. Chem. Eng. 3, 871 (2015). doi: 10.1021/sc5008412 [53] Y. N. Li, J. Q. Wang, L. N. He, Z. Z. Yang, A. H. Liu, B. Yu, and C. R. Luan, Green Chem. 14, 2752 (2012). doi: 10.1039/c2gc35845j [54] R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Chem. Rev. 113, 1499 (2013). doi: 10.1021/cr300182k [55] C. D. Jin, N. Xiang, X. Zhu, E. Shuang, K. C. Sheng, and X. M. Zhang, Appl. Catal. B: Environ. 285, 119799 (2021). doi: 10.1016/j.apcatb.2020.119799 [56] H. Kimura, M. Nakahara, and N. Matubayasi, J. Phys. Chem. A 117, 2102 (2013). doi: 10.1021/jp312002h -