co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst
-
Abstract: The high reaction barrier of the oxygen evolution reaction (OER) has always been the bottleneck of the water decomposition reaction, so low-cost, high-performance and stable catalysts are urgently needed currently. Herein, we designed an effective OER electrocatalyst BaCo0.6Fe0.2Ni0.2O3−δ (BCFN) by a co-doping strategy. The overpotential of BCFN at a current density of 10 mA/cm2 reaches 310 mV, and possesses a Tafel slope of 50.2 mV/dec. The catalytic capability of BCFN is much stronger than that of Fe-doped BaCo0.8Fe0.2O3−δ (BCF 360 mV), Ni-doped BaCo0.8Ni0.2O3−δ (375 mV), and benchmark IrO2 with excellent performance (329 mV). At the same time, BCFN is also a fairly stable alkaline OER catalyst. After 500-cycle scans, BCFN still shows high catalytic activity without significant decrease in catalytic performance. Electrochemical experiments show that BCFN has the fastest reaction kinetics and the lowest charge transfer resistance among the materials in our study. In addition, a large amount of highly oxidative oxygen O22−/O− and hydroxyl groups OH− on the surface of BCFN are conducive to the occurrence of OER, thereby increasing the reaction rate. This work provides a universal strategy to develop high-performance electrocatalysts for electrochemical energy conversion technology.
-
Key words:
- Electrocatalysis /
- Oygen evolution reaction /
- Co-doping /
- Perovskite oxide
-
Figure 5. (a) Linear sweep voltammetry curves of BCFN, IrO2, BCF, BCN, and BC. (b) Tafel slopes of BCFN, IrO2, BCF, BCN, and BC. (c) Mass activity at different applied potential and (d) the EIS curves for BCFN, BCF, BCN, and BC. (e) The electrochemical double-layer capacitance values of the various catalysts. (f) Chronopotentiometric response of BCFN at 10 mA/cm2 for 32 h.
Table I. O 1s XPS peaks deconvolution results.
Catalyst Relative content of four subordinate peaks /% Lattice O2− O22−/O− OH− or O2 H2O or CO32− BCFN 12.19 20.23 46.66 20.92 BCF 18.28 15.63 42.06 24.03 BCN 19.66 15.49 41.45 23.40 -
[1] G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song, W. Zhou, and Z. Shao, Energy Fuels 34, 15169 (2020). doi: 10.1021/acs.energyfuels.0c01887 [2] L. Ye and K. Xie, J. Energy Chem. 54, 736 (2021). doi: 10.1016/j.jechem.2020.06.050 [3] W. Wang, M. Xu, X. Xu, W. Zhou, and Z. Shao, Angew. Chem. Int. Ed. 59, 136 (2020). doi: 10.1002/anie.201900292 [4] Q. Lu, X. Zou, Y. Bu, K. Liao, W. Zhou, and Z. Shao, Small 18, e2105604 (2022). doi: 10.1002/smll.202105604 [5] Y. Cheng, C. Xu, L. Jia, J. D. Gale, L. Zhang, C. Liu, P. K. Shen, and S. P. Jiang, Appl. Catal. B 163, 96 (2015). doi: 10.1016/j.apcatb.2014.07.049 [6] M. Ledendecker, G. Clavel, M. Antonietti, and M. Shalom, Adv. Funct. Mater. 25, 393 (2015). doi: 10.1002/adfm.201402078 [7] M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale 7, 8920 (2015). doi: 10.1039/C4NR07243J [8] S. Feng, L. Yang, Z. Zhang, Q. Li, and D. Xu, ACS Appl. Energy Mater. 3, 943 (2019). [9] X. Xu, C. Su, and Z. Shao, Energy Fuels 35, 13585 (2021). doi: 10.1021/acs.energyfuels.1c02111 [10] Y. F. Sun, Y. Q. Zhang, J. Chen, J. H. Li, Y. T. Zhu, Y. M. Zeng, B. S. Amirkhiz, J. Li, B. Hua, and J. L. Luo, Nano Lett. 16, 5303 (2016). doi: 10.1021/acs.nanolett.6b02757 [11] L. Han, S. Dong, and E. Wang, Adv. Mater. 28, 9266 (2016). doi: 10.1002/adma.201602270 [12] D. A. Agyeman, Y. Zheng, T. H. Lee, M. Park, W. Tamakloe, G. H. Lee, H. W. Jang, K. Cho, and Y. M. Kang, ACS Catal. 11, 424 (2020). doi: 10.1021/acscatal.0c02608 [13] D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, and H. Pan, Adv. Energy Mater. 10, 2002464 (2020). doi: 10.1002/aenm.202002464 [14] Y. H. Wang, W. J. Jiang, W. Yao, Z. L. Liu, Z. Liu, Y. Yang, and L. Z. Gao, Rare Met. 40, 2327 (2021). doi: 10.1007/s12598-021-01728-x [15] P. N. Panahi, M. H. Rasoulifard, and S. Babaei, Rare Met. 39, 139 (2019). [16] L. Dai, X. B. Lu, G. H. Chu, C. H. He, W. C. Zhan, and G. J. Zhou, Rare Met. 40, 555 (2020). [17] Y. Matsumoto, S. Yamada, and T. Nishida, J. Electrochem. Soc. 127, 2360 (1980). doi: 10.1149/1.2129415 [18] A. Grimaud, K. J. May, C. E. Carlton, Y. L. Lee, M. Risch, W. T. Hong, J. Zhou, and Y. Shao-Horn, Nat. Commun. 4, 2439 (2013). doi: 10.1038/ncomms3439 [19] B. J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, and T. J. Schmidt, J. Am. Chem. Soc. 141, 5231 (2019). doi: 10.1021/jacs.8b12101 [20] S. Gupta, W. Kellogg, H. Xu, X. Liu, J. Cho, and G. Wu, Chem. Asian J. 11, 10 (2016). doi: 10.1002/asia.201500640 [21] X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, and Z. Shao, Adv. Sci. 3, 1500187 (2016). doi: 10.1002/advs.201500187 [22] Q. Xu, S. Song, Y. Zhang, Y. Wang, J. Zhang, Y. Ruan, and M. Han, Electrochim. Acta 191, 577 (2016). doi: 10.1016/j.electacta.2016.01.109 [23] K. Li, M. Yin, Z. Wang, X. Chen, T. Zhu, J. Wang, N. Dewangan, Y. Yu, Q. Zhong, and S. Kawi, ChemistrySelect 3, 12424 (2018). doi: 10.1002/slct.201802906 [24] C. Jin, X. Cao, F. Lu, Z. Yang, and R. Yang, Int. J. Hydrog. Energy. 38, 10389 (2013). doi: 10.1016/j.ijhydene.2013.06.047 [25] H. Jo, Y. Yang, A. Seong, D. Jeong, J. Kim, S. H. Joo, Y. J. Kim, L. Zhang, Z. Liu, J. Q. Wang, S. K. Kwak, and G. Kim, J. Mater. Chem. A 10, 2271 (2022). doi: 10.1039/D1TA08445C [26] F. Dong, M. Ni, Y. Chen, D. Chen, M. O. Tadé, and Z. Shao, J. Mater. Chem. A 2, 20520 (2014). doi: 10.1039/C4TA04372C [27] L. Tang, Y. Rao, L. Wei, H. Zheng, H. Liu, W. Zhang, and K. Tang, Chin. J. Chem. 39, 2692 (2021). doi: 10.1002/cjoc.202100215 [28] C. Bernard, B. Durand, and M. Verelst, J. Mater. Sci. 39, 2821 (2004). doi: 10.1023/B:JMSC.0000021459.24971.91 [29] L. Zhu, G. Lu, Y. Wang, Y. Guo, and Y. Guo, Chin. J. Catal. 31, 1006 (2010). doi: 10.1016/S1872-2067(10)60101-5 [30] X. Liu, W. Y. Huang, Q. Zhou, X. R. Chen, K. Yang, D. Li, and D. D. Dionysiou, Rare Met. 40, 1086 (2020). [31] G. Pecchi, C. Campos, and O. Peña, Mater. Res. Bull. 44, 846 (2009). doi: 10.1016/j.materresbull.2008.09.009 [32] M. A. Salguero Salas, J. M. De Paoli, O. E. Linarez Pérez, N. Bajales, and V. C. Fuertes, Microporous Mesoporous Mater. 293, 109797 (2020). doi: 10.1016/j.micromeso.2019.109797 [33] A. Raj, M. Kumar, D. Mishra, and A. Anshul, Opt. Mater. 101, 109773 (2020). doi: 10.1016/j.optmat.2020.109773 [34] K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y. L. Lee, A. Grimaud, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 3264 (2012). doi: 10.1021/jz301414z [35] J. I. Jung and D. D. Edwards, J. Solid State Chem. 184, 2238 (2011). doi: 10.1016/j.jssc.2011.06.016 [36] Q. Luo, D. Lin, W. Zhan, W. Zhang, L. Tang, J. Luo, Z. Gao, P. Jiang, M. Wang, L. Hao, and K. Tang, ACS Appl. Energy Mater. 3, 7149 (2020). doi: 10.1021/acsaem.0c01192 [37] L. Tang, W. Zhang, D. Lin, Y. Ren, H. Zheng, Q. Luo, L. Wei, H. Liu, J. Chen, and K. Tang, Inorg. Chem. Front. 7, 4488 (2020). doi: 10.1039/D0QI00754D [38] F. Dong, L. Li, Z. Kong, X. Xu, Y. Zhang, Z. Gao, B. Dongyang, M. Ni, Q. Liu, and Z. Lin, Small 17, 2006638 (2021). doi: 10.1002/smll.202006638 [39] X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, and Z. Shao, Adv. Mater. 28, 6442 (2016). doi: 10.1002/adma.201600005 [40] P. Anand, M. S. Wong, and Y. P. Fu, Sustain. Energy Fuels 5, 4858 (2021). doi: 10.1039/D1SE01054A [41] C. Hu, X. Wang, T. Yao, T. Gao, J. Han, X. Zhang, Y. Zhang, P. Xu, and B. Song, Adv. Funct. Mater. 29, 1902449 (2019). doi: 10.1002/adfm.201902449 [42] G. Zhang and J. H. Li, Chin. J. Chem. Phys. 31, 517 (2018). doi: 10.1063/1674-0068/31/cjcp1805127 [43] D. Aegerter, M. Borlaf, E. Fabbri, A. H. Clark, M. Nachtegaal, T. Graule, and T. J. Schmidt, Catalysts 10, 984 (2020). doi: 10.3390/catal10090984 [44] E. Fabbri, M. Nachtegaal, X. Cheng, and T. J. Schmidt, Adv. Energy Mater. 5, 1402033 (2015). doi: 10.1002/aenm.201402033 [45] S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke, W. F. Pong, Y. Chen, Y. Song, M. Liang, C. T. Chen, H. Wang, W. Zhou, and Z. Shao, Adv. Funct. Mater. 32, 2111091 (2021). doi: 10.1002/adfm.202111091 -