• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Fe-Ni co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst

  • Abstract: The high reaction barrier of the oxygen evolution reaction (OER) has always been the bottleneck of the water decomposition reaction, so low-cost, high-performance and stable catalysts are urgently needed currently. Herein, we designed an effective OER electrocatalyst BaCo0.6Fe0.2Ni0.2O3−δ (BCFN) by a co-doping strategy. The overpotential of BCFN at a current density of 10 mA/cm2 reaches 310 mV, and possesses a Tafel slope of 50.2 mV/dec. The catalytic capability of BCFN is much stronger than that of Fe-doped BaCo0.8Fe0.2O3−δ (360 mV), Ni-doped BaCo0.8Ni0.2O3−δ (375 mV), and benchmark IrO2 with excellent performance (329 mV). At the same time, BCFN is also a fairly stable alkaline OER catalyst. After 500-cycle scans, BCFN still shows high catalytic activity without significant decrease in catalytic performance. Electrochemical experiments show that BCFN has the fastest reaction kinetics and the lowest charge transfer resistance among the materials in this work. In addition, a large amount of highly oxidative oxygen O22−/O and hydroxyl groups OH on the surface of BCFN are conducive to the occurrence of OER, thereby increasing the reaction rate. This work provides a universal strategy to develop high-performance electrocatalysts for electrochemical energy conversion technology.

     

/

返回文章
返回