co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst

Huimin Liu Lianwei Wei Hui Zheng Kaibin Tang

Huimin Liu, Lianwei Wei, Hui Zheng, Kaibin Tang. co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2204072
Citation: Huimin Liu, Lianwei Wei, Hui Zheng, Kaibin Tang. co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2204072

doi: 10.1063/1674-0068/cjcp2204072

co-Doping Strategy in Perovskite for Developing an Efficient Oxygen Evolution Electrocatalyst

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  (a) XRD patterns of BCFN and BCF. (b) XRD patterns of BC and BCN.

    Figure  2.  (a) FT-IR spectra of BC, BCN, BCF, and BCFN. (b) Raman spectra of BC, BCN, BCF, and BCFN.

    Figure  3.  (a) SEM image of BCFN. (b) The N2 adsorption-desorption isotherms and the pore size distribution (c) of BCFN. (d) TEM image of BCFN. (e) HRTEM image and (f) SAED pattern along the [001] of BCFN.

    Figure  4.  (a) XPS spectra of Ba 3d & Co 2p orbitals of BCFN, BCF and BCN. (b) Fe 2p XPS spectra for BCFN and BCF. (c) Ni 2p XPS spectra for BCFN and BCN ( "star" means satellite peak). (d) O 1s XPS spectra and peak fitting results of BCFN, BCF and BCN.

    Figure  5.  (a) Linear sweep voltammetry curves of BCFN, IrO2, BCF, BCN, and BC. (b) Tafel slopes of BCFN, IrO2, BCF, BCN, and BC. (c) Mass activity at different applied potential and (d) the EIS curves for BCFN, BCF, BCN, and BC. (e) The electrochemical double-layer capacitance values of the various catalysts. (f) Chronopotentiometric response of BCFN at 10 mA/cm2 for 32 h.

    Figure  6.  (a) Cyclic voltammetry curves of BCFN with different cycles. (b) Polarization curves after several cycles. HRTEM images of (c) fresh BCFN and (d) BCFN after 100-cycle scans.

    Table  I.   O 1s XPS peaks deconvolution results.

    CatalystRelative content of four subordinate peaks /%
    Lattice O2−O22−/OOH or O2H2O or CO32−
    BCFN12.1920.2346.6620.92
    BCF18.2815.6342.0624.03
    BCN19.6615.4941.4523.40
    下载: 导出CSV
  • [1] G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song, W. Zhou, and Z. Shao, Energy Fuels 34, 15169 (2020). doi: 10.1021/acs.energyfuels.0c01887
    [2] L. Ye and K. Xie, J. Energy Chem. 54, 736 (2021). doi: 10.1016/j.jechem.2020.06.050
    [3] W. Wang, M. Xu, X. Xu, W. Zhou, and Z. Shao, Angew. Chem. Int. Ed. 59, 136 (2020). doi: 10.1002/anie.201900292
    [4] Q. Lu, X. Zou, Y. Bu, K. Liao, W. Zhou, and Z. Shao, Small 18, e2105604 (2022). doi: 10.1002/smll.202105604
    [5] Y. Cheng, C. Xu, L. Jia, J. D. Gale, L. Zhang, C. Liu, P. K. Shen, and S. P. Jiang, Appl. Catal. B 163, 96 (2015). doi: 10.1016/j.apcatb.2014.07.049
    [6] M. Ledendecker, G. Clavel, M. Antonietti, and M. Shalom, Adv. Funct. Mater. 25, 393 (2015). doi: 10.1002/adfm.201402078
    [7] M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale 7, 8920 (2015). doi: 10.1039/C4NR07243J
    [8] S. Feng, L. Yang, Z. Zhang, Q. Li, and D. Xu, ACS Appl. Energy Mater. 3, 943 (2019).
    [9] X. Xu, C. Su, and Z. Shao, Energy Fuels 35, 13585 (2021). doi: 10.1021/acs.energyfuels.1c02111
    [10] Y. F. Sun, Y. Q. Zhang, J. Chen, J. H. Li, Y. T. Zhu, Y. M. Zeng, B. S. Amirkhiz, J. Li, B. Hua, and J. L. Luo, Nano Lett. 16, 5303 (2016). doi: 10.1021/acs.nanolett.6b02757
    [11] L. Han, S. Dong, and E. Wang, Adv. Mater. 28, 9266 (2016). doi: 10.1002/adma.201602270
    [12] D. A. Agyeman, Y. Zheng, T. H. Lee, M. Park, W. Tamakloe, G. H. Lee, H. W. Jang, K. Cho, and Y. M. Kang, ACS Catal. 11, 424 (2020). doi: 10.1021/acscatal.0c02608
    [13] D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, and H. Pan, Adv. Energy Mater. 10, 2002464 (2020). doi: 10.1002/aenm.202002464
    [14] Y. H. Wang, W. J. Jiang, W. Yao, Z. L. Liu, Z. Liu, Y. Yang, and L. Z. Gao, Rare Met. 40, 2327 (2021). doi: 10.1007/s12598-021-01728-x
    [15] P. N. Panahi, M. H. Rasoulifard, and S. Babaei, Rare Met. 39, 139 (2019).
    [16] L. Dai, X. B. Lu, G. H. Chu, C. H. He, W. C. Zhan, and G. J. Zhou, Rare Met. 40, 555 (2020).
    [17] Y. Matsumoto, S. Yamada, and T. Nishida, J. Electrochem. Soc. 127, 2360 (1980). doi: 10.1149/1.2129415
    [18] A. Grimaud, K. J. May, C. E. Carlton, Y. L. Lee, M. Risch, W. T. Hong, J. Zhou, and Y. Shao-Horn, Nat. Commun. 4, 2439 (2013). doi: 10.1038/ncomms3439
    [19] B. J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, and T. J. Schmidt, J. Am. Chem. Soc. 141, 5231 (2019). doi: 10.1021/jacs.8b12101
    [20] S. Gupta, W. Kellogg, H. Xu, X. Liu, J. Cho, and G. Wu, Chem. Asian J. 11, 10 (2016). doi: 10.1002/asia.201500640
    [21] X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, and Z. Shao, Adv. Sci. 3, 1500187 (2016). doi: 10.1002/advs.201500187
    [22] Q. Xu, S. Song, Y. Zhang, Y. Wang, J. Zhang, Y. Ruan, and M. Han, Electrochim. Acta 191, 577 (2016). doi: 10.1016/j.electacta.2016.01.109
    [23] K. Li, M. Yin, Z. Wang, X. Chen, T. Zhu, J. Wang, N. Dewangan, Y. Yu, Q. Zhong, and S. Kawi, ChemistrySelect 3, 12424 (2018). doi: 10.1002/slct.201802906
    [24] C. Jin, X. Cao, F. Lu, Z. Yang, and R. Yang, Int. J. Hydrog. Energy. 38, 10389 (2013). doi: 10.1016/j.ijhydene.2013.06.047
    [25] H. Jo, Y. Yang, A. Seong, D. Jeong, J. Kim, S. H. Joo, Y. J. Kim, L. Zhang, Z. Liu, J. Q. Wang, S. K. Kwak, and G. Kim, J. Mater. Chem. A 10, 2271 (2022). doi: 10.1039/D1TA08445C
    [26] F. Dong, M. Ni, Y. Chen, D. Chen, M. O. Tadé, and Z. Shao, J. Mater. Chem. A 2, 20520 (2014). doi: 10.1039/C4TA04372C
    [27] L. Tang, Y. Rao, L. Wei, H. Zheng, H. Liu, W. Zhang, and K. Tang, Chin. J. Chem. 39, 2692 (2021). doi: 10.1002/cjoc.202100215
    [28] C. Bernard, B. Durand, and M. Verelst, J. Mater. Sci. 39, 2821 (2004). doi: 10.1023/B:JMSC.0000021459.24971.91
    [29] L. Zhu, G. Lu, Y. Wang, Y. Guo, and Y. Guo, Chin. J. Catal. 31, 1006 (2010). doi: 10.1016/S1872-2067(10)60101-5
    [30] X. Liu, W. Y. Huang, Q. Zhou, X. R. Chen, K. Yang, D. Li, and D. D. Dionysiou, Rare Met. 40, 1086 (2020).
    [31] G. Pecchi, C. Campos, and O. Peña, Mater. Res. Bull. 44, 846 (2009). doi: 10.1016/j.materresbull.2008.09.009
    [32] M. A. Salguero Salas, J. M. De Paoli, O. E. Linarez Pérez, N. Bajales, and V. C. Fuertes, Microporous Mesoporous Mater. 293, 109797 (2020). doi: 10.1016/j.micromeso.2019.109797
    [33] A. Raj, M. Kumar, D. Mishra, and A. Anshul, Opt. Mater. 101, 109773 (2020). doi: 10.1016/j.optmat.2020.109773
    [34] K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y. L. Lee, A. Grimaud, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 3264 (2012). doi: 10.1021/jz301414z
    [35] J. I. Jung and D. D. Edwards, J. Solid State Chem. 184, 2238 (2011). doi: 10.1016/j.jssc.2011.06.016
    [36] Q. Luo, D. Lin, W. Zhan, W. Zhang, L. Tang, J. Luo, Z. Gao, P. Jiang, M. Wang, L. Hao, and K. Tang, ACS Appl. Energy Mater. 3, 7149 (2020). doi: 10.1021/acsaem.0c01192
    [37] L. Tang, W. Zhang, D. Lin, Y. Ren, H. Zheng, Q. Luo, L. Wei, H. Liu, J. Chen, and K. Tang, Inorg. Chem. Front. 7, 4488 (2020). doi: 10.1039/D0QI00754D
    [38] F. Dong, L. Li, Z. Kong, X. Xu, Y. Zhang, Z. Gao, B. Dongyang, M. Ni, Q. Liu, and Z. Lin, Small 17, 2006638 (2021). doi: 10.1002/smll.202006638
    [39] X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, and Z. Shao, Adv. Mater. 28, 6442 (2016). doi: 10.1002/adma.201600005
    [40] P. Anand, M. S. Wong, and Y. P. Fu, Sustain. Energy Fuels 5, 4858 (2021). doi: 10.1039/D1SE01054A
    [41] C. Hu, X. Wang, T. Yao, T. Gao, J. Han, X. Zhang, Y. Zhang, P. Xu, and B. Song, Adv. Funct. Mater. 29, 1902449 (2019). doi: 10.1002/adfm.201902449
    [42] G. Zhang and J. H. Li, Chin. J. Chem. Phys. 31, 517 (2018). doi: 10.1063/1674-0068/31/cjcp1805127
    [43] D. Aegerter, M. Borlaf, E. Fabbri, A. H. Clark, M. Nachtegaal, T. Graule, and T. J. Schmidt, Catalysts 10, 984 (2020). doi: 10.3390/catal10090984
    [44] E. Fabbri, M. Nachtegaal, X. Cheng, and T. J. Schmidt, Adv. Energy Mater. 5, 1402033 (2015). doi: 10.1002/aenm.201402033
    [45] S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke, W. F. Pong, Y. Chen, Y. Song, M. Liang, C. T. Chen, H. Wang, W. Zhou, and Z. Shao, Adv. Funct. Mater. 32, 2111091 (2021). doi: 10.1002/adfm.202111091
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  169
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-02
  • 网络出版日期:  2022-06-24

目录

    /

    返回文章
    返回