Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy

Zhengxin Wang Jiaming Jiang Yifan Huang Weimin Liu

Zhengxin Wang, Jiaming Jiang, Yifan Huang, Weimin Liu. Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203046
Citation: Zhengxin Wang, Jiaming Jiang, Yifan Huang, Weimin Liu. Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203046

doi: 10.1063/1674-0068/cjcp2203046

Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9-(2,2-Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • 1.  (a) Natural and zwitterionic molecular structure of JDMN, (b) proposed model for JDMN in nonpolar solvent, and (c) proposed model for JDMN in polar solvent.

    Figure  1.  (a) Steady-state absorption and (b) fluorescence spectra of JDMN in cyclohexane, THF, and DMSO; The blue dashed line (Cyclo Abs) in (b) is the mirror image of the absorption spectrum in cyclohexane.

    Figure  2.  (a) FSRS spectra of JDMN in cyclohexane, THF, and DMSO under 1100 cm−1. (b) Transient Raman amplitudes of the HOOP mode in three solvents.

    Figure  3.  DFT calculation showing the optimized structure of (a) HOOP mode, (b) anti-symmetric (C≡N) stretching mode, and (c) symmetric (C≡N) stretching mode.

    Figure  4.  Two-dimensional plot of the FSRS spectra of JDMN in (a) cyclohexane, (b) THF, and (c) DMSO above 2000 cm−1. Transient Raman amplitudes of vibrational modes in (d) cyclohexane, (e) THF, and (f) DMSO.

    Figure  5.  The difference in peak frequency between the symmetric and the anti-symmetric stretching modes in (a) cyclohexane (45 cm-1), (b) THF (39 cm-1), and (c) DMSO (32 cm-1) at delayed time zero of FSRS spectra.

  • [1] T. D. James and S. Shinkai, in Host-Guest Chemistry: Mimetic Approaches to Study Carbohydrate Recognition, S. Penadés Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 159 (2002).
    [2] M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, and E. A. Theodorakis, Chem. Biol. 8, 123 (2001). doi: 10.1016/S1074-5521(00)90061-9
    [3] T. Iio, M. Itakura, S. Takahashi, and S. Sawada, J. Biol. Chem. 109, 499 (1991).
    [4] P. Gautam and A. Harriman, J, Chem. Soc. Faraday Trans. 90, 697 (1994). doi: 10.1039/ft9949000697
    [5] Z. A. Dreger, J. O. White, and H. G. Drickamer, Chem. Phys. Lett. 290, 399 (1998). doi: 10.1016/S0009-2614(98)00580-6
    [6] C. E. Kung and J. K. Reed, Biochemistry-Us 28, 6678 (1989). doi: 10.1021/bi00442a022
    [7] T. Iwaki, C. Torigoe, M. Noji, and M. Nakanishi, Biochemistry-Us 32, 7589 (1993). doi: 10.1021/bi00080a034
    [8] M. A. Haidekker and E. A. Theodorakis, Org. Biomol. Chem. 5, 1669 (2007). doi: 10.1039/B618415D
    [9] K. I. Gutkowski, M. L. Japas, and P. F. Aramendía, Chem. Phys. Lett. 426, 329 (2006). doi: 10.1016/j.cplett.2006.06.027
    [10] A. Paul and A. Samanta, J. Phys. Chem. B 112, 16626 (2008). doi: 10.1021/jp8060575
    [11] A. Safarzadeh-Amiri, Chem. Phys. Lett. 129, 225 (1986). doi: 10.1016/0009-2614(86)80201-9
    [12] A. Y. Jee, E. Bae, and M. Lee, J. Phys. Chem. B 113, 16508 (2009). doi: 10.1021/jp908430w
    [13] S. Q. Yang and K. L. Han, J. Phys. Chem. A 120, 4961 (2016). doi: 10.1021/acs.jpca.5b12612
    [14] M. S. A. Abdel-Mottaleb, R. O. Loutfy, and R. Lapouyade, J. Photochem. Photobiol. A 48, 87 (1989). doi: 10.1016/1010-6030(89)87093-5
    [15] S. Mqadmi and A. Pollet, J. Photochem. Photobiol. A 53, 275 (1990). doi: 10.1016/1010-6030(90)87131-T
    [16] M. Blanchard-Desce, R. Wortmann, S. Lebus, J. M. Lehn, and P. Krämer, Chem. Phys. Lett. 243, 526 (1995). doi: 10.1016/0009-2614(95)00895-B
    [17] A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, J. Chem. Phys. 116, 2542 (2002). doi: 10.1063/1.1433966
    [18] A. M. Moran, A. M. Kelley, and S. Tretiak, Chem. Phys. Lett. 367, 293 (2003). doi: 10.1016/S0009-2614(02)01583-X
    [19] H. Jin, M. Liang, S. Arzhantsev, X. Li, and M. Maroncelli, J. Phys. Chem B 114, 7565 (2010). doi: 10.1021/jp100908a
    [20] R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986). doi: 10.1351/pac198658091239
    [21] J. Guthmuller and B. Champagne, J. Chem. Phys. 127, 164507 (2007). doi: 10.1063/1.2790907
    [22] J. Wei, Y. Wu, R. Pu, L. Shi, J. Jiang, J. Du, Z. Guo, Y. Huang, and W. Liu, J. Phys. Chem. Lett. 12, 4466 (2021). doi: 10.1021/acs.jpclett.1c00202
    [23] W. Xu, L. Wei, Z. Wang, R. Zhu, J. Jiang, H. Liu, J. Du, T. C. Weng, Y. B. Zhang, Y. Huang, and W. Liu, J. Phys. Chem. B 125, 10796 (2021). doi: 10.1021/acs.jpcb.1c05936
    [24] W. Zhang, W. Xu, G. Zhang, J. Kong, X. Niu, J. M. W. Chan, W. Liu, and A. Xia, J. Phys. Chem. B 125, 4456 (2021). doi: 10.1021/acs.jpcb.1c01742
    [25] W. Liu, L. Tang, B. G. Oscar, Y. Wang, C. Chen, and C. Fang, J. Phys. Chem. Lett. 8, 997 (2017). doi: 10.1021/acs.jpclett.7b00322
    [26] W. Liu, Y. Wang, L. Tang, B. G. Oscar, L. Zhu, and C. Fang, Chem. Sci. 7, 5484 (2016). doi: 10.1039/C6SC00672H
    [27] B. Mennucci, C. Cappelli, R. Cammi, and J. Tomasi, Theor. Chem. Acc. 117, 1029 (2007). doi: 10.1007/s00214-006-0221-2
    [28] T. Subina, S. Amirjalayer, B. Mennucci, S. Woutersen, M. Hilbers, D. Bonn, and A. M. Brouwer, J. Phys. Chem. Lett. 7, 4285 (2016). doi: 10.1021/acs.jpclett.6b02277
    [29] G. Duvanel, J. Grilj, H. Chaumeil, P. Jacques, and E. Vauthey, Photochem. Photobiol. Sci. 9, 908 (2010). doi: 10.1039/c0pp00042f
    [30] B. Boldrini, E. Cavalli, A. Painelli, and F. Terenziani, J. Phys. Chem. A 106, 6286 (2002). doi: 10.1021/jp020031b
    [31] S. Arzhantsev, K. A. Zachariasse, and M. Maroncelli, J. Phys. Chem. A 110, 3454 (2006).
    [32] O. Weingart, Chem. Phys. 349, 348 (2008). doi: 10.1016/j.chemphys.2008.02.020
    [33] E. V. Gromov, J. Chem. Phys. 141, 224308 (2014). doi: 10.1063/1.4903174
    [34] E. V. Gromov, I. Burghardt, H. Köppel, and L. S. Cederbaum, J. Phys. Chem. A 115, 9237 (2011). doi: 10.1021/jp2011843
    [35] P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005). doi: 10.1126/science.1118379
    [36] J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, Proc. Natl. Acad. Sci. USA 106, 1784 (2009). doi: 10.1073/pnas.0812056106
    [37] B. D. Allen, A. C. Benniston, A. Harriman, S. A. Rostron, and C. F. Yu, Phys. Chem. Chem. Phys. 7, 3035 (2005). doi: 10.1039/b507165h
    [38] Y. Zhang, L. Yuan, S. Jia, X. Liu, J. Zhao, and G. Yin, Phys. Chem. Chem. Phys. 21, 3218 (2019). doi: 10.1039/C8CP07127F
    [39] J. Mei, J. Z. Sun, A. Qin, and B. Z. Tang, Dyes Pigm. 141, 366 (2017). doi: 10.1016/j.dyepig.2017.02.039
    [40] W. Zhang, J. Kong, W. Xu, X. Niu, D. Song, W. Liu, and A. Xia, Chin. J. Chem. Phys. 35, 69 (2022). doi: 10.1063/1674-0068/cjcp2111223
    [41] O. Louant, B. Champagne, and V. Liegeois, Chem. Phys. Lett. 634, 249 (2015). doi: 10.1016/j.cplett.2015.06.014
    [42] Y. N. Mabkhot, S. S. Al-Showiman, A. Barakat, S. M. Soliman, N. A. Kheder, M. M. Alharbi, A. Asayari, A. B. Muhsinah, A. Ullah, and S. L. Badshah, BMC Chemistry 13, 25 (2019). doi: 10.1186/s13065-019-0542-6
    [43] Monika, S. Inaoka, K. Iwata, and S. Saha, Spectrochim. Acta A Mol. Biomol. Spectrosc. 224, 117419 (2020). doi: 10.1016/j.saa.2019.117419
  • 加载中
图(6)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  161
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回