Rationally-Designed Sandwiched Nanostructures Boosting Fe-N Based Catalysts toward Efficient Oxygen Reduction Electrocatalysis in an Acidic Medium

Lingyun Liu Tingjing Lu Xiang Shi Zhibo Wang Chuan Li Zhenfa Zi

Lingyun Liu, Tingjing Lu, Xiang Shi, Zhibo Wang, Chuan Li, Zhenfa Zi. Rationally-Designed Sandwiched Nanostructures Boosting Fe-N Based Catalysts toward Efficient Oxygen Reduction Electrocatalysis in an Acidic Medium[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203035
Citation: Lingyun Liu, Tingjing Lu, Xiang Shi, Zhibo Wang, Chuan Li, Zhenfa Zi. Rationally-Designed Sandwiched Nanostructures Boosting Fe-N Based Catalysts toward Efficient Oxygen Reduction Electrocatalysis in an Acidic Medium[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2203035

doi: 10.1063/1674-0068/cjcp2203035

Rationally-Designed Sandwiched Nanostructures Boosting Fe-N Based Catalysts toward Efficient Oxygen Reduction Electrocatalysis in an Acidic Medium

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Synthetic diagram, morphological and structural characteristics. (a) Illustration of the synthetic approach of NC/Fe/NC catalysts. (b−d) SEM, TEM, and TEM-EDS mapping images for NC/Fe/NC catalyst, where scan bar in the inset of (c) is 5, and that is 200 nm in (d). (e, f) SEM and TEM images for Fe/NC catalyst. (g) XRD patterns for NC/Fe/NC and Fe/NC catalysts.

    Figure  2.  Electrochemical performance results. (a) LSV curves recorded in O2-saturated 0.5 mol/L H2SO4 solution at 1600 r/min for NC/Fe/NC catalyst, Fe/NC catalyst, and commercial Pt/C catalyst. (b) CV curves collected in N2- or O2- saturated electrolyte at 0 r/min for the NC/Fe/NC catalyst. (c) LSV plots for NC/Fe/NC catalyst under various rotating speeds. (d) Chronoamperometric (I-t) tests for NC/Fe/NC and commercial Pt/C catalysts.

    Figure  3.  Structural and electrochemical examinations after ORR tests. (a) SEM image, (b) TEM image, and (c) LSV curves for the NC/Fe/NC catalysts after 1000 cycles ORR tests.

    Figure  4.  Electronic structure characterizations. (a) Fe 2p and (b) N 1s XPS spectra, and (c) N K-edge NEXAFS spectra for NC/Fe/NC and Fe/NC catalysts.

  • [1] J. Sun, S. E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang, and H. Zhao, Angew. Chem. Int. Ed. 57, 16511 (2018). doi: 10.1002/anie.201811573
    [2] Z. Meng, S. Cai, R. Wang, H. Tang, S. Song, and P. Tsiakaras, Appl. Catal., B 244, 120 (2019). doi: 10.1016/j.apcatb.2018.11.037
    [3] X. Jiang, K. Elouarzaki, Y. Tang, J. Zhou, G. Fu, and J. M. Lee, Carbon 164, 369 (2020). doi: 10.1016/j.carbon.2020.04.013
    [4] X. Zhao, C. Xi, R. Zhang, L. Song, C. Wang, J. S. Spendelow, A. I. Frenkel, J. Yang, H. L. Xin, and K. Sasaki, ACS Catal. 10, 10637 (2020). doi: 10.1021/acscatal.0c03036
    [5] M. H. Shao, Q. W. Chang, J. P. Dodelet, and R. Chenitz, Chem. Rev. 116, 3594 (2016). doi: 10.1021/acs.chemrev.5b00462
    [6] J. Kim, C. Kim, I.-Y. Jeon, J. B. Baek, Y. W. Ju, and G. Kim, Chemelectrochem 5, 2857 (2018). doi: 10.1002/celc.201800674
    [7] R. Wu, X. Wan, J. Deng, X. Huang, S. Chen, W. Ding, L. Li, Q. Liao, and Z. Wei, Chem. Commun. 55, 9023 (2019). doi: 10.1039/C9CC02986A
    [8] Y. Yang, W. Xiao, X. Feng, Y. Xiong, M. Gong, T. Shen, Y. Lu, H. D. Abruna, and D. Wang, ACS Nano 13, 5968 (2019). doi: 10.1021/acsnano.9b01961
    [9] W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, and L. J. Wan, J. Am. Chem. Soc. 138, 3570 (2016). doi: 10.1021/jacs.6b00757
    [10] J. Ying, X. Y. Yang, Z. Y. Hu, S. C. Mu, C. Janiak, W. Geng, M. Pan, X. Ke, G. Van Tendeloo, and B. L. Su, Nano Energy 8, 214 (2014). doi: 10.1016/j.nanoen.2014.06.010
    [11] R. Liu, D. Wu, X. Feng, and K. Muellen, Angew. Chem. Int. Ed. 49, 2565 (2010). doi: 10.1002/anie.200907289
    [12] L. Dai, Y. Xue, L. Qu, H. J. Choi, and J. B. Baek, Chem. Rev. 115, 4823 (2015). doi: 10.1021/cr5003563
    [13] Q. Ren, H. Wang, X. F. Lu, Y. X. Tong, and G. R. Li, Adv. Sci. 5, 1700515 (2018). doi: 10.1002/advs.201700515
    [14] B. Qiu, M. Xing, and J. Zhang, Chem. Soc. Rev. 47, 2165 (2018). doi: 10.1039/C7CS00904F
    [15] W. R. Cheng, S. B. Xi, Z. P. Wu, D. Y. Luan, and X. W. Lou, Sci. Adv. 7, eabk0919 (2021). doi: 10.1126/sciadv.abk0919
    [16] V. Kashyap, A. Anand, R. Soni, and K. Sreekumar, Chemelectrochem 6, 2956 (2019). doi: 10.1002/celc.201900260
    [17] J. Liu, C. Fan, G. Liu, and L. Jiang, Appl. Surf. Sci. 538, 148017 (2021). doi: 10.1016/j.apsusc.2020.148017
    [18] H. Xu, D. Wang, P. Yang, A. Liu, R. Li, Y. Li, L. Xiao, J. Zhang, and M. An, Phys. Chem. Chem. Phys. 22, 28297 (2020). doi: 10.1039/D0CP04676K
    [19] J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z. L. Wang, and C. Sun, Appl. Catal. B 280, 119411 (2021). doi: 10.1016/j.apcatb.2020.119411
    [20] L. Lin, Q. Zhu, and A. W. Xu, J. Am. Chem. Soc. 136, 11027 (2014). doi: 10.1021/ja504696r
    [21] J. Masa, W. Xia, M. Muhler, and W. Schuhmann, Angew. Chem. Int. Ed. 54, 10102 (2015). doi: 10.1002/anie.201500569
    [22] G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. Brett, A. B. Fuertes, M. Sevilla, and M. M. Titirici, ACS Nano 10, 5922 (2016). doi: 10.1021/acsnano.6b01247
    [23] T. Sun, B. B. Tian, J. Lu, and C. L. Su, J. Mater. Chem. A 5, 18933 (2017). doi: 10.1039/C7TA04915C
    [24] C. H. Choi, H.-K. Lim, M. W. Chung, G. Chon, N. R. Sahraie, A. Altin, M.-T. Sougrati, L. Stievano, H. S. Oh, E. S. Park, F. Luo, P. Strasser, G. Drazic, K. J. J. Mayrhofer, H. Kim, and F. Jaouen, Energy Environ. Sci. 11, 3176 (2018). doi: 10.1039/C8EE01855C
    [25] D. D. Zheng, X. N. Cao, and X. C. Wang, Angew. Chem. Int. Ed. 55, 11512 (2016). doi: 10.1002/anie.201606102
    [26] L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Nano Lett. 13, 2151 (2013). doi: 10.1021/nl400600x
    [27] W. R. Cheng, X. Zhao, H. Su, F. M. Tang, W. Che, H. Zhang, and Q. H. Liu, Nat. Energy 4, 115 (2019). doi: 10.1038/s41560-018-0308-8
    [28] W. R. Cheng, X. F. Lu, D. Y. Luan, and X. W. Lou, Angew. Chem. Int. Ed. 59, 18234 (2020). doi: 10.1002/anie.202008129
    [29] Y. C. Hong, S. R. Zhang, F. F. Tao, and Y. Wang, ACS Catal. 7, 3639 (2017). doi: 10.1021/acscatal.7b00636
    [30] L. K. Parrott and E. Erasmus, Catal. Lett. 148, 2008 (2018). doi: 10.1007/s10562-018-2411-7
    [31] H. Su, X. Zhao, W. Cheng, H. Zhang, Y. Li, W. Zho, M. Li, and Q. Liu, ACS Energy Lett. 4, 1816 (2019). doi: 10.1021/acsenergylett.9b01129
    [32] P. Louette, F. Bodino, and J. J. Pireaux, Surf. Sci. Spectra 12, 84 (2005). doi: 10.1116/11.20050918
    [33] W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen, X. Zheng, Z. Qi, C. Wang, R. Long, M. Chen, J. Zhu, P. Gao, L. Song, J. Jiang, and Y. Xiong, 5, 2865 (2019).
    [34] X. Zhao, H. Su, W. Cheng, H. Zhang, W. Che, F. Tang, and Q. Liu, ACS Appl. Mater. Interfaces 11, 34854 (2019). doi: 10.1021/acsami.9b09315
    [35] L. Liu, Y. Li, Z. Zi, R. Li, Y. Meng, Y. Wu, X. Wei, and Y. Ma, Chin. J. Chem. Phys. 10.1063/1674-0068/cjcp2101012 (2021).
    [36] J. Feng and B. Wang, Chin. J. Chem. Phys. 34, 532 (2021). doi: 10.1063/1674-0068/cjcp2108134
    [37] T. Shen, X. Huang, S. Xi, W. Li, S. Sun, Y. Hou, J. Energy Chem. 68, 184 (2022). doi: 10.1016/j.jechem.2021.10.027
    [38] J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma, C. Chen, L. Yang, Z. Zou, D. Xie, H. Yang, J. Mater. Chem. A 8, 3686 (2020). doi: 10.1039/C9TA12207A
    [39] N. Li, H. Tan, X. Ding, H. Duan, W. Hu, G. Li, Q. Ji, Y. Lu, Y. Wang, F. Hu, C. Wang, W. Cheng, Z. Sun, W. Yan, Appl. Catal. B 266, 118621 (2020). doi: 10.1016/j.apcatb.2020.118621
  • 加载中
图(4)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  107
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 录用日期:  2022-05-18
  • 网络出版日期:  2022-08-06

目录

    /

    返回文章
    返回