Rationally-Designed Sandwiched Nanostructures Boosting Fe-N Based Catalysts toward Efficient Oxygen Reduction Electrocatalysis in an Acidic Medium
-
Abstract: The development of acidic-available noble-metal-free oxygen reduction reaction (ORR) catalysts with high activity and good long-term durability is of significant importance for efficient proton exchange membrane fuel cells (PEMFC), but is still very challenging. Herein, we develop originally a facile wet-chemical-adsorption, pyrolysis and post-etching strategy to effectively intercalate Fe clusters among two nitrogen-doped carbon (NC) layers, forming unique hollow spherical nanostructures with sandwiched NC/Fe/NC shells as an active ORR catalyst. Thanks to the sandwiched nanostructure and the active Fe-N species, this as-prepared hollow sandwiched NC/Fe/NC catalyst could present superior ORR activity in an acidic medium, with a nice onset potential of 0.92 V and decent diffusion-limited current density of ~5.1 mA/cm2. The NC/Fe/NC catalyst manifests strong methanol tolerance and outstanding durability during a long-term acidic ORR operation, being a promising alternative to Pt-based catalysts toward efficient proton exchange membrane fuel cells. Synchrotron radiation characterizations and X-ray photoemission spectroscopy reveal at the atomic-level that the abundant robust Fe−N bonds presented in the sandwiched shells of hollow NC/Fe/NC spherical catalyst contribute substantially to high electrochemical activity and superior corrosion-resistance for efficient 4e− ORR in acidic electrolyte.
-
Figure 1. Synthetic diagram, morphological and structural characteristics. (a) Illustration of the synthetic approach of NC/Fe/NC catalysts. (b−d) SEM, TEM, and TEM-EDS mapping images for NC/Fe/NC catalyst, where scan bar in the inset of (c) is 5, and that is 200 nm in (d). (e, f) SEM and TEM images for Fe/NC catalyst. (g) XRD patterns for NC/Fe/NC and Fe/NC catalysts.
Figure 2. Electrochemical performance results. (a) LSV curves recorded in O2-saturated 0.5 mol/L H2SO4 solution at 1600 r/min for NC/Fe/NC catalyst, Fe/NC catalyst, and commercial Pt/C catalyst. (b) CV curves collected in N2- or O2- saturated electrolyte at 0 r/min for the NC/Fe/NC catalyst. (c) LSV plots for NC/Fe/NC catalyst under various rotating speeds. (d) Chronoamperometric (I-t) tests for NC/Fe/NC and commercial Pt/C catalysts.
-
[1] J. Sun, S. E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang, and H. Zhao, Angew. Chem. Int. Ed. 57, 16511 (2018). doi: 10.1002/anie.201811573 [2] Z. Meng, S. Cai, R. Wang, H. Tang, S. Song, and P. Tsiakaras, Appl. Catal., B 244, 120 (2019). doi: 10.1016/j.apcatb.2018.11.037 [3] X. Jiang, K. Elouarzaki, Y. Tang, J. Zhou, G. Fu, and J. M. Lee, Carbon 164, 369 (2020). doi: 10.1016/j.carbon.2020.04.013 [4] X. Zhao, C. Xi, R. Zhang, L. Song, C. Wang, J. S. Spendelow, A. I. Frenkel, J. Yang, H. L. Xin, and K. Sasaki, ACS Catal. 10, 10637 (2020). doi: 10.1021/acscatal.0c03036 [5] M. H. Shao, Q. W. Chang, J. P. Dodelet, and R. Chenitz, Chem. Rev. 116, 3594 (2016). doi: 10.1021/acs.chemrev.5b00462 [6] J. Kim, C. Kim, I.-Y. Jeon, J. B. Baek, Y. W. Ju, and G. Kim, Chemelectrochem 5, 2857 (2018). doi: 10.1002/celc.201800674 [7] R. Wu, X. Wan, J. Deng, X. Huang, S. Chen, W. Ding, L. Li, Q. Liao, and Z. Wei, Chem. Commun. 55, 9023 (2019). doi: 10.1039/C9CC02986A [8] Y. Yang, W. Xiao, X. Feng, Y. Xiong, M. Gong, T. Shen, Y. Lu, H. D. Abruna, and D. Wang, ACS Nano 13, 5968 (2019). doi: 10.1021/acsnano.9b01961 [9] W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, and L. J. Wan, J. Am. Chem. Soc. 138, 3570 (2016). doi: 10.1021/jacs.6b00757 [10] J. Ying, X. Y. Yang, Z. Y. Hu, S. C. Mu, C. Janiak, W. Geng, M. Pan, X. Ke, G. Van Tendeloo, and B. L. Su, Nano Energy 8, 214 (2014). doi: 10.1016/j.nanoen.2014.06.010 [11] R. Liu, D. Wu, X. Feng, and K. Muellen, Angew. Chem. Int. Ed. 49, 2565 (2010). doi: 10.1002/anie.200907289 [12] L. Dai, Y. Xue, L. Qu, H. J. Choi, and J. B. Baek, Chem. Rev. 115, 4823 (2015). doi: 10.1021/cr5003563 [13] Q. Ren, H. Wang, X. F. Lu, Y. X. Tong, and G. R. Li, Adv. Sci. 5, 1700515 (2018). doi: 10.1002/advs.201700515 [14] B. Qiu, M. Xing, and J. Zhang, Chem. Soc. Rev. 47, 2165 (2018). doi: 10.1039/C7CS00904F [15] W. R. Cheng, S. B. Xi, Z. P. Wu, D. Y. Luan, and X. W. Lou, Sci. Adv. 7, eabk0919 (2021). doi: 10.1126/sciadv.abk0919 [16] V. Kashyap, A. Anand, R. Soni, and K. Sreekumar, Chemelectrochem 6, 2956 (2019). doi: 10.1002/celc.201900260 [17] J. Liu, C. Fan, G. Liu, and L. Jiang, Appl. Surf. Sci. 538, 148017 (2021). doi: 10.1016/j.apsusc.2020.148017 [18] H. Xu, D. Wang, P. Yang, A. Liu, R. Li, Y. Li, L. Xiao, J. Zhang, and M. An, Phys. Chem. Chem. Phys. 22, 28297 (2020). doi: 10.1039/D0CP04676K [19] J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z. L. Wang, and C. Sun, Appl. Catal. B 280, 119411 (2021). doi: 10.1016/j.apcatb.2020.119411 [20] L. Lin, Q. Zhu, and A. W. Xu, J. Am. Chem. Soc. 136, 11027 (2014). doi: 10.1021/ja504696r [21] J. Masa, W. Xia, M. Muhler, and W. Schuhmann, Angew. Chem. Int. Ed. 54, 10102 (2015). doi: 10.1002/anie.201500569 [22] G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. Brett, A. B. Fuertes, M. Sevilla, and M. M. Titirici, ACS Nano 10, 5922 (2016). doi: 10.1021/acsnano.6b01247 [23] T. Sun, B. B. Tian, J. Lu, and C. L. Su, J. Mater. Chem. A 5, 18933 (2017). doi: 10.1039/C7TA04915C [24] C. H. Choi, H.-K. Lim, M. W. Chung, G. Chon, N. R. Sahraie, A. Altin, M.-T. Sougrati, L. Stievano, H. S. Oh, E. S. Park, F. Luo, P. Strasser, G. Drazic, K. J. J. Mayrhofer, H. Kim, and F. Jaouen, Energy Environ. Sci. 11, 3176 (2018). doi: 10.1039/C8EE01855C [25] D. D. Zheng, X. N. Cao, and X. C. Wang, Angew. Chem. Int. Ed. 55, 11512 (2016). doi: 10.1002/anie.201606102 [26] L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Nano Lett. 13, 2151 (2013). doi: 10.1021/nl400600x [27] W. R. Cheng, X. Zhao, H. Su, F. M. Tang, W. Che, H. Zhang, and Q. H. Liu, Nat. Energy 4, 115 (2019). doi: 10.1038/s41560-018-0308-8 [28] W. R. Cheng, X. F. Lu, D. Y. Luan, and X. W. Lou, Angew. Chem. Int. Ed. 59, 18234 (2020). doi: 10.1002/anie.202008129 [29] Y. C. Hong, S. R. Zhang, F. F. Tao, and Y. Wang, ACS Catal. 7, 3639 (2017). doi: 10.1021/acscatal.7b00636 [30] L. K. Parrott and E. Erasmus, Catal. Lett. 148, 2008 (2018). doi: 10.1007/s10562-018-2411-7 [31] H. Su, X. Zhao, W. Cheng, H. Zhang, Y. Li, W. Zho, M. Li, and Q. Liu, ACS Energy Lett. 4, 1816 (2019). doi: 10.1021/acsenergylett.9b01129 [32] P. Louette, F. Bodino, and J. J. Pireaux, Surf. Sci. Spectra 12, 84 (2005). doi: 10.1116/11.20050918 [33] W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen, X. Zheng, Z. Qi, C. Wang, R. Long, M. Chen, J. Zhu, P. Gao, L. Song, J. Jiang, and Y. Xiong, 5, 2865 (2019). [34] X. Zhao, H. Su, W. Cheng, H. Zhang, W. Che, F. Tang, and Q. Liu, ACS Appl. Mater. Interfaces 11, 34854 (2019). doi: 10.1021/acsami.9b09315 [35] L. Liu, Y. Li, Z. Zi, R. Li, Y. Meng, Y. Wu, X. Wei, and Y. Ma, Chin. J. Chem. Phys. 10.1063/1674-0068/cjcp2101012 (2021). [36] J. Feng and B. Wang, Chin. J. Chem. Phys. 34, 532 (2021). doi: 10.1063/1674-0068/cjcp2108134 [37] T. Shen, X. Huang, S. Xi, W. Li, S. Sun, Y. Hou, J. Energy Chem. 68, 184 (2022). doi: 10.1016/j.jechem.2021.10.027 [38] J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma, C. Chen, L. Yang, Z. Zou, D. Xie, H. Yang, J. Mater. Chem. A 8, 3686 (2020). doi: 10.1039/C9TA12207A [39] N. Li, H. Tan, X. Ding, H. Duan, W. Hu, G. Li, Q. Ji, Y. Lu, Y. Wang, F. Hu, C. Wang, W. Cheng, Z. Sun, W. Yan, Appl. Catal. B 266, 118621 (2020). doi: 10.1016/j.apcatb.2020.118621 -