Tuning the Exponential Decay Factor in Oligophenylene Molecular Junctions with Graphene Nanoribbon Electrodes
-
Abstract: We explore the transport properties of oligophenylene molecular junctions, where the center molecule containing 1, 2, or 3 phenyls is sandwiched between two graphene nanoribbons (GNR) with different edge shapes. According to the obtained results of the first-principles calculations combined with non-equilibrium Green's function method, we find that the molecular length-dependent resistance of all examined oligophenylene molecular junctions follows well the exponential decay law with different slopes, and the exponential decay factor is sensitive to the edge shape of GNRs and the molecule-electrode connecting configuration. These observations indicate that the current through the oligophenylene molecular junction can be effectively tuned by changing the edge shape of GNRs, the molecular length, and the molecular contacting configuration. These findings provide theoretical insight into the design of molecular devices using GNRs as electrodes.
-
Key words:
- Molecular junction /
- Graphene electrode /
- Transport property /
- Ab initio calculation
-
Figure 1. Schematic view of three oigophenylene molecular junctions with different GNR-electrodes, here, M
$ _1 $ , M$ _2 $ and M$ _3 $ stand for the oigophenylene molecule containing 1, 2 and 3 phenyl rings, respectively. (a) ZGNR with width of W=12, (b) AGNR-electrodes with width of W=11, and (c) (1,2)CGNR-electrodes with width of W=10. Here, the blue dashed rectangles stand for the central scattering regions, including the oigophenylene molecule, and two units of left and right GNR-electrodes.Figure 2. The calculated current through the oigophenylene molecular junctions vs. the bias range from 0 to 0.1 V. (a) ZGNR-electrodes, where the inset is the corresponding I-V for junctions with atomic scale Au-electrodes adopted from Ref.[9] for comparison. (b) AGNR-electrodes, where the results for the oigophenylene connecting at the 6th/4th carbon in AGNR-electrodes are plotted by the solid/dashed lines in the lower/upper part, and the inset enlarges I-V curves under small bias range. (c) and (d) (1,2)GNR- and (4,1)GNR-electrodes. Here, the red up-triangle, green down-triangle, and blue square lines stand for the M1, M2, and M3 junctions, respectively.
Figure 3. The semilog-plotted resistance vs. the number of phenyls in oigophenylene molecular junctions, in which the lines are fitted in the exponential equation with the calculated resistance data at bias of 0.01 V. Here, the initial molecule-ZGNR distance
$ d $ before geometry optimization is 1.9 Å, labeled with the red up-triangle line, 1.8 Å with the green down-triangle line, and 1.7 Å with the blue square line, respectively. Two black solid lines stand for the junctions with the AGNR-electrodes connecting at two different carbon sites, the purple dashed line labels for the junction with Au-electrodes junctions, and the blue square dashed line and the red pentagram solid line stand for the junctions with the (1,2)CGNR- and (4,1)CGNR-electrodes, respectively.Figure 4. The local transmission pathways (upper) and spatial distribution of LDOS (lower) in the M1 junctions. (a) ZGNR-electrodes at 0.035 eV, (b) AGNR-electrodes at 0.07 eV, and (c) (1,2)CGNR-electrodes at 0.45 eV. Here, the blue arrows stand for the electron hopping from left to right electrodes, and the red ones in an inverse direction, the line thickness and color-deepness of an arrow indicate the hopping amplitude and direction, respectively. The isovalues of the LDOS in (a), (b), and (c) is 0.05, 0.0005 and 0.02 Å−5· V−1, respectively.
Table I. The calculated exponential decay factor
$\beta$ for the junctions with the ZGNR-, AGNR-, (1,2)GNR-, and (4,1)GNR-electrodes of the almost same width under different bias voltages.Vb/V β / Å−1 for electrode ZGNR AGNR$_6$ AGNR$_4$ (1,2)GNR (4,1)GNR 0.01 0.62 4.71 0.84 1.09 1.28 0.02 0.62 4.67 0.86 1.10 1.28 0.03 0.61 4.72 0.84 1.10 1.27 0.04 0.61 4.71 0.84 1.10 1.26 0.05 0.60 4.71 0.84 1.10 1.25 0.06 0.61 4.67 0.84 1.10 1.26 0.07 0.60 4.77 0.84 1.10 1.25 0.08 0.62 4.68 0.84 1.10 1.24 0.09 0.62 4.67 0.84 1.10 1.23 0.10 0.61 4.71 0.84 1.10 1.23 -
[1] A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1 [2] D. Xiang, X. L. Wang, C. C. Jia, T. Lee, and X. F. Guo, Chem. Rev. 116, 4318 (2016). doi: 10.1021/acs.chemrev.5b00680 [3] M. Magoga and C. Joachim, Phys. Rev. 56, 4722 (1997). doi: 10.1103/PhysRevB56.4722 [4] D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, J. Phys. Chem. B 106, 2813 (2002). doi: 10.1021/jp013476t [5] T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, and H. Tokumoto, J. Phys. Chem. B 106, 5886 (2002). doi: 10.1021/jp0134749 [6] C. C. Kaun and H. Guo, Nano. Lett. 3, 1521 (2003). doi: 10.1021/nl0346023 [7] C. C. Kaun, B. Larade, and H. Guo, Phys. Rev. B. 67, 121411(R) (2003). doi: 10.1103/PhysRevB.67.121411 [8] T. Tada, D. Nozaki, M. Kondo, S. Hamayama, and K. Yoshizawa, J. Am. Chem. Soc. 126, 14182 (2004). doi: 10.1021/ja031736+ [9] B. S. Kim, J. M. Beebe, Y. Jun, X. Y. Zhu, and C. D. Frisbie, J. Am. Chem. Soc. 128, 4970 (2006). doi: 10.1021/ja0607990 [10] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997). doi: 10.1126/science.278.5336.252 [11] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999). doi: 10.1126/science.286.5444.1550 [12] Z. T. Xie, I. Baldea, C. E. Smith, Y. F. Wu, and C. D. Frisbie, ACS Nano 9, 8022 (2015). doi: 10.1021/acsnano.5b01629 [13] Y. Tsuji, R. Movassagh, S. Datta, and R. Hoffmann, ACS Nano 9, 11109 (2015). doi: 10.1021/acsnano.5b04615 [14] Y. X. Zhai, G. M. Ji, C. F. Fang, B. Cui, P. G. Zhao, and D. S. Liu, Sci. China Phys. Mech. 54, 1455 (2011). doi: 10.1007/s11431-011-4366-4 [15] H. Q. Wan, B. H. Zhou, X. W. Chen, C. Q. Sun, and G. H. Zhou, J. Phys. Chem. C 116, 2570 (2012). doi: 10.1021/jp2092576 [16] C. Herrmann, G. C. Solomon, J. E. Subotnik, V. Mujica, and M. A. Ratner, J. Chem. Phys. 132, 024103 (2010). doi: 10.1063/1.3283062 [17] P. P. Pal and B. D. Dunietz, J. Chem. Phys. 137, 194104 (2012). doi: 10.1063/1.4767344 [18] S. L. Liu, Y. P. Feng, and C. Zhang, J. Chem. Phys. 139, 191103 (2013). doi: 10.1063/1.4833677 [19] A. Mahmoud and P. Lugli, Appl. Phys. Lett. 103, 033506 (2013). doi: 10.1063/1.4813844 [20] Y. J. Li, P. Zolotavin, P. Doak, L. Kronik, J. B. Neaton, and D. Natelson, Nano Lett. 16, 1104 (2016). doi: 10.1021/acs.nanolett.5b04340 [21] A. Batra, P. Darancet, Q. S. Chen, J. S. Meisner, J. R. Widawsky, J. B. Neaton, C. Nuckolls, and L. Venkataraman, Nano Lett. 13, 6233 (2013). doi: 10.1021/nl403698m [22] M. L. Du, Y. J. Hu, J. Huang, and Q. X. Li, Chin. J. Chem. Phys. 31, 33 (2018). doi: 10.1063/1674-0068/31/cjcp1706117 [23] M. L. Wang, G. P. Zhang, X. X. Fu, and C. K. Wang, Chin. J. Chem. Phys. 33, 697 (2020). doi: 10.1063/1674-0068/cjcp1911204 [24] N. Atodiresei, J. Brede, P. Lazić, V. Caciuc, G. Hoffmann, R. Wiesendanger, and S. Blüge, Phys. Rev. Lett. 105, 066601 (2010). doi: 10.1103/PhysRevLett.105.066601 [25] J. Hihath, C. Bruot, H. Nakamura, Y. Asai, I. Díez-Pérez, Y. Lee, L. P. Yu, and N. J. Tao, ACS Nano 5, 8331 (2011). doi: 10.1021/nn2030644 [26] E. Burzurí, Y. Yamamoto, M. Warnock, X. L Zhong, K. Park, A. Cornia, and H. S. J. van der Zant, Nano Lett. 14, 3191 (2014). doi: 10.1021/nl500524w [27] F. M. Hossain, F. Al-Dirini, and E. Skafidas, Appl. Phys. Lett. 105, 043102 (2014). doi: 10.1063/1.4891857 [28] A. K. Geim and K. S. Novselov, Nat. Mater. 6, 183 (2007). doi: 10.1038/nmat1849 [29] X. T. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. CamposDelgado, J. M. Romo-Herrera, H. Son, Y. P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701 (2009). doi: 10.1126/science.1166862 [30] P. Ruffieux, S. Y. Wang, B. Yang, C. Sanchez-Sanchez1, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. L. Feng, K. Mllen, and R. Fasel, Nature 531, 489 (2016). doi: 10.1038/nature17151 [31] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009). doi: 10.1038/nature07872 [32] C. G. Tao, L. Y. Jiao, O. V. Yazyev, Y. C. Chen, J. J. Feng, X. W. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. J. Dai, and M. F. Crommie, Nature Phys. 7, 616 (2011). doi: 10.1038/nphys1991 [33] X. L. Li, X. R. Wang, L. Zhang, S. Lee, and H. J. Dai, Science 319, 1229 (2008). doi: 10.1126/science.1150878 [34] M. H. Pan, E. C. Girão, X. T. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S. Dresselhaus, Nano Lett. 12, 1928 (2012). doi: 10.1021/nl204392s [35] O. V. Yazyev, R. B. Capaz, and S. G. Louie, Phys. Rev. B 84, 115406 (2011). doi: 10.1103/PhysRevB.84.115406 [36] F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-Alcalde, L. Vandersypen, and H. S. J. van der Zant, Nano Lett. 11, 4607 (2011). doi: 10.1021/nl202065x [37] Y. Cao, S. H. Dong, S. Liu, L. He, L. Gan, X. M. Yu, M. L. Steigerwald, X. S. Wu, Z. F Liu, and X. F. Guo, Angew. Chem. Int. Ed. 51, 12228 (2012). doi: 10.1002/anie.201205607 [38] H. Q. Wan, Y. Xu, and G. H. Zhou, J. Chem. Phys. 136, 184704 (2012). doi: 10.1063/1.4712615 [39] K. Ullmann, P. B. Coto, S. Leitherer, A. Molina-Ontoria, N. Martín, M. Thoss, and H. B. Weber, Nano Lett. 15, 3512 (2015). doi: 10.1021/acs.nanolett.5b00877 [40] X. B. Li, H. L. Li, H. Q. Wan, and G. H. Zhou, Org. Electron. 19, 26 (2015). doi: 10.1016/j.orgel.2015.01.006 [41] C. C. Jia, A. Migliore, N. Xin, S. Y. Huang, J. Y. Wang, Q. Yang, S. P. Wang, H. L. Chen, D. M. Wang, B. Y. Feng, Z. R. Liu, G. Y. Zhang, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. F. Guo, Science 352, 1443 (2016). doi: 10.1126/science.aaf6298 [42] S. G. Sarwat, P. Gehring, G. R. Hernandez, J. H. Warner, G. Andrew, D. Briggs, J. A. Mol, and H. Bhaskaran, Nano Lett. 17, 3688 (2017). doi: 10.1021/acs.nanolett.7b00909 [43] H. J. Yan, A. J. Bergren, and R. L. McCreery, J. Am. Chem. Soc. 133, 19168 (2011). doi: 10.1021/ja206619a [44] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104 (2001). doi: 10.1103/PhysRevB.63.121104 [45] J. M Soler, E. Artacho, J. D Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). doi: 10.1088/0953-8984/14/11/302 [46] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. A. Ratner, Nature Chem. 2, 223 (2010). doi: 10.1038/nchem.546 [47] X. W. Chen, K. H. Song, B. H. Zhou, H. Y. Wang, and G. H. Zhou, Appl. Phys. Lett. 98, 093111 (2011). doi: 10.1063/1.3555445 [48] X. W. Chen, Z. G. Shi, B. J. Chen, K. H. Song, and G. H. Zhou, Carbon 72, 365 (2014). doi: 10.1016/j.carbon.2014.02.024 -