• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

广义量子主方程:教程综述和最新进展

Generalized Quantum Master Equation: A Tutorial Review and Recent Advances

  • 摘要: 广义量子主方程(GQME)为模拟嵌入在量子环境中的开放量子体系的约化动力学提供了一种通用且严格的计算方法. 开放量子体系的动力学在能量、电荷以及量子相干转移过程和光化学反应中至关重要. 量子系统通常被定义为我们感兴趣的自由度,例如捕光分子的电子态或凝聚态体系中的特定振动模式. 系统周围的环境也被称为热浴,必须考虑它对系统的影响. 例如,广义量子主方程理论中用投影算符方法对其进行描述. 本综述总结了广义量子主方程的两种标准形式,即时间卷积形式的Nakajima-Zwanzig GQME和无卷积形式的广义量子主方程. 在更流行的NZ-GQME形式中,记忆核刻画了非马尔可夫和非微扰效应,给出了约化密度矩阵的精确量子动力学. 总结了几种通过含有分子信息但无投影算符的时间关联函数作为输入信息,进而求解含投影算符的记忆核的方法. 特别值得一提的是近期提出的NZ-GQME改进版方法,该方法是基于将哈密顿量划分为更通用的对角和非对角部分. 上述系统相关的热浴时间关联函数可以通过数值精确或近似量子动力学方法计算. 本文将有助于理解广义量子主方程的理论背景,并且展望通过GQME与量子计算技术的结合解决使用当今最先进的经典超级计算机无法解决的与量子动力学和量子信息相关的复杂问题.

     

    Abstract: The generalized quantum master equation (GQME) provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment. Dynamics of open quantum systems is important in excitation energy, charge, and quantum coherence transfer as well as reactive photochemistry. The system is usually chosen to be the interested degrees of freedom such as the electronic states in light-harvesting molecules or tagged vibrational modes in a condensed-phase system. The environment is also called the bath, whose influence on the system has to be considered, and for instance can be described by the GQME formalisms using the projection operator technique. In this review, we provide a heuristic description of the development of two canonical forms of GQME, namely the time-convoluted Nakajima-Zwanzig form (NZ-GQME) and the time-convolutionless form (TCL-GQME). In the more popular NZ-GQME form, the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects, which gives formally exact dynamics of the reduced density matrix. We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information. In particular, the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts. The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods. We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today's state-of-the-art classical supercomputers.

     

/

返回文章
返回