Abstract:
The reaction of C
3H
8+O(
3P)→C
3H
7+OH is investigated using
ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Møller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C
3H
8+O(
3P)→i-C
3H
7+OH. Based upon the
ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogen-abstraction from propane involving reaction channel competitions is helpful for the under-standing of propane combustion.