Turn off MathJax
Article Contents
Hui-Xin Zhang, Zheng-Qing Huang, Tao Ban, Xue Su, Bolun Yang, Chun-Ran Chang. DFT Studies of CO Reaction Behaviors on α-Fe2O3(001) Oxygen-Vacancy Surface in Chemical Looping Reforming[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2304028
Citation: Hui-Xin Zhang, Zheng-Qing Huang, Tao Ban, Xue Su, Bolun Yang, Chun-Ran Chang. DFT Studies of CO Reaction Behaviors on α-Fe2O3(001) Oxygen-Vacancy Surface in Chemical Looping Reforming[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2304028

DFT Studies of CO Reaction Behaviors on α-Fe2O3(001) Oxygen-Vacancy Surface in Chemical Looping Reforming

doi: 10.1063/1674-0068/cjcp2304028
More Information
  • Corresponding author: E-mail: huangzq@xjtu.edu.cn
  • Received Date: 2023-04-02
  • Accepted Date: 2023-05-21
  • Available Online: 2023-05-23
  • Chemical looping reforming of methane to syngas (CO and H2) is one of the most promising routes for methane utilization, where the further reaction of CO on oxygen carrier surfaces is a primary determinant of CO selectivity. In this work, the effects of oxygen vacancy (VO) on CO desorption, CO oxidation, and CO dissociation are systematically studied by using density functional theory calculations. Our calculated results reveal that increasing VO concentration can weaken CO desorption at Fe sites due to the enhanced localization of electrons in the Fe atoms. Also, the increase in VO concentration from 1/12 ML to 1/6 ML leads to a dramatic increase of activation energy in the CO oxidation from 0.64 eV to 1.10 eV. Moreover, the increase in VO concentration is conducive to CO dissociation, but the dissociation is still almost impossible due to the high reaction energies (large than 3.00 eV). Considering these three reaction paths, CO desorption can proceed spontaneously at reaction temperatures above 900 K. Increasing VO concentration can improve the selectivity of syngas production due to the less favorable CO oxidation compared with CO desorption at high VO concentrations (1/6 ML). This work reveals the microscopic mechanism that CO selectivity rises in the CLRM as the degree of Fe2O3 reduction increases.


  • loading
  • [1]
    X. Zhu, K. Z. Li, L. Neal, and F. X. Li, ACS Catal. 8, 8213 (2018). doi: 10.1021/acscatal.8b01973
    J. J. Huang, W. Liu, Y. H. Yang, and B. Liu, ACS Catal. 8, 1748 (2018). doi: 10.1021/acscatal.7b03964
    Z. Alipour, V. B. Borugadda, H. Wang, and A. K. Dalai, Chem. Eng. J. 452, 139416 (2022). doi: 10.1016/j.cej.2022.139416
    Y. Liu, F. X. Lu, Y. Tang, M. Y. Liu, F. F. Tao, and Y. Zhang, Appl. Catal. B 261, 118219 (2020). doi: 10.1016/j.apcatb.2019.118219
    D. Neumann and G. Veser, AIChE J. 51, 210 (2005). doi: 10.1002/aic.10284
    M. C. Tang, L. Xu, and M. H. Fan, Appl. Energ. 151, 143 (2015). doi: 10.1016/j.apenergy.2015.04.017
    K. J. Warren and J. R. Scheffe, J. Phys. Chem. C 123, 13208 (2019). doi: 10.1021/acs.jpcc.9b01352
    J. J. Huang, W. Liu, W. T. Hu, I. Metcalfe, Y. H. Yang, and B. Liu, Appl. Energ. 236, 635 (2019). doi: 10.1016/j.apenergy.2018.12.029
    A. Shafiefarhood, N. Galinsky, Y. Huang, Y. G. Chen, and F. X. Li, ChemCatChem 6, 790 (2014). doi: 10.1002/cctc.201301104
    Y. Kang, M. Tian, C. Huang, J. Lin, B. Hou, X. Pan, L. Li, A. I. Rykov, J. Wang, and X. J. Wang, ACS Catal. 9, 8373 (2019). doi: 10.1021/acscatal.9b02730
    J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, and L. F. de Diego, Prog. Energy Combust. Sci. 38, 215 (2012). doi: 10.1016/j.pecs.2011.09.001
    Y. Kang, M. Tian, Y. H. Wang, Y. T. Wang, C. D. Huang, Y. Y. Zhu, L. Li, G. J. Wang, and X. D. Wang, ACS Sustainable Chem. Eng. 6, 12884 (2018). doi: 10.1021/acssuschemeng.8b02262
    L. B. Yan, C. J. Lim, G. X. Yue, B. Z. Fang, B. S. He, and J. R. Grace, Thermochim. Acta 648, 52 (2017). doi: 10.1016/j.tca.2016.12.003
    Q. Zafar, T. Mattisson, and B. Gevert, Ind. Eng. Chem. Res. 44, 3485 (2005). doi: 10.1021/ie048978i
    C. F. Lin, W. Qin, and C. Q. Dong, Chem. Eng. J. 301, 257 (2016). doi: 10.1016/j.cej.2016.04.136
    L. Huang, M. C. Tang, M. H. Fan, and H. S. Cheng, Appl. Energ. 159, 132 (2015). doi: 10.1016/j.apenergy.2015.08.118
    Y. Y. Chen, M. Guo, M. Kim, Y. Liu, L. Qin, T. L. Hsieh, and L. S. Fan, Chem. Eng. J. 406, 126729 (2021). doi: 10.1016/j.cej.2020.126729
    H. X. Zhang, Z. Q. Huang, B. Yang, and C. R. Chang, Chem. Eng. Sci. 262, 118041 (2022). doi: 10.1016/j.ces.2022.118041
    Y. Kang, M. Tian, C. D. Huang, J. Lin, B. L. Hou, X. L. Pan, L. Li, A. I. Rykov, J. H. Wang, and X. D. Wang, ACS Catal. 9, 8373 (2019). doi: 10.1021/acscatal.9b02730
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). doi: 10.1103/PhysRev.140.A1133
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). doi: 10.1103/PhysRevB.46.6671
    J. White and D. M. Bird, Phys. Rev. B 50, 4954 (1994). doi: 10.1103/PhysRevB.50.4954
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). doi: 10.1103/PhysRevB.59.1758
    J. J. Tang and B. Liu, J. Phys. Chem. C 120, 6642 (2016). doi: 10.1021/acs.jpcc.6b00374
    S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998). doi: 10.1103/PhysRevB.57.1505
    G. Rollmann, A. Rohrbach, P. Entel, and J. Hafner, Phys. Rev. B 69, 165107 (2004). doi: 10.1103/PhysRevB.69.165107
    A. Kiejna and T. Pabisiak, J. Phys. Chem. C 117, 24339 (2013). doi: 10.1021/jp406946s
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    J. W. Bennett, X. Huang, Y. Fang, D. M. Cwiertny, V. H. Grassian, and S. E. Mason, J. Phys. Chem. C 123, 6450 (2019). doi: 10.1021/acs.jpcc.8b08675
    R. Blake, R. Hessevick, T. Zoltai, and L. W. Finger,Am. Miner. 51, 123 (1966).
    C. S. Lo, K. S. Tanwar, A. M. Chaka, and T. P. Trainor, Phys. Rev. B 75, 075425 (2007). doi: 10.1103/PhysRevB.75.075425
    L. Bengtsson, Phys. Rev. B 59, 12301 (1999). doi: 10.1103/PhysRevB.59.12301
    G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999). doi: 10.1063/1.480097
    B. J. Berne, G. Ciccotti, and D. F. Coker, Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics, World Scientific, (1998).
    V. Wang, N. Xu, J. C. Liu, G. Tang, and W. T. Geng, Comput. Phys. Commun. 267, 108033 (2021). doi: 10.1016/j.cpc.2021.108033
    V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011). doi: 10.1021/jp202489s
    R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, J. Comput. Chem. 41, 1931 (2020). doi: 10.1002/jcc.26353
    R. Bader, Chem. Rev. 91, 893 (1991). doi: 10.1021/cr00005a013
    Y. Zhu, S. Lin, W. Gao, M. Zhang, C. Yang, P. Feng, C. Xu, and Z. L. Wang, ACS Appl. Mater. Interfaces 13, 35795 (2021). doi: 10.1021/acsami.1c09248
    M. Rioult, D. Stanescu, E. Fonda, A. Barbier, and H. Magnan, J. Phys. Chem. C 120, 7482 (2016). doi: 10.1021/acs.jpcc.6b00552
    C. Dong, S. Sheng, W. Qin, Q. Lu, Y. Zhao, X. Wang, and J. J. Zhang, Appl. Surf. Sci. 257, 8647 (2011). doi: 10.1016/j.apsusc.2011.05.042
    W. Qin, Y. Wang, C. Dong, J. Zhang, Q. Chen, and Y. P. Yang, Appl. Surf. Sci. 282, 718 (2013). doi: 10.1016/j.apsusc.2013.06.041
    Y. Liu, L. Qin, Z. Cheng, J. W. Goetze, F. Kong, J. A. Fan, and L. S. Fan, Nat. Commun. 10, 1 (2019). doi: 10.1038/s41467-018-07882-8
    E. R. Monazam, R. W. Breault, R. Siriwardane, G. Richards, and S. Carpenter, Chem. Eng. J. 232, 478 (2013). doi: 10.1016/j.cej.2013.07.091
  • suppl_data.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (71) PDF downloads(11) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint