Volume 34 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Jinfeng Liu, Xiao He. $ \mathit{{Ab}} $ $ \mathit{{Initio}} $ Molecular Dynamics Simulation of Liquid Water with Fragment- based Quantum Mechanical Approach under Periodic Boundary Conditions[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 761-768. doi: 10.1063/1674-0068/cjcp2110183
Citation: Jinfeng Liu, Xiao He. $ \mathit{{Ab}} $ $ \mathit{{Initio}} $ Molecular Dynamics Simulation of Liquid Water with Fragment- based Quantum Mechanical Approach under Periodic Boundary Conditions[J]. Chinese Journal of Chemical Physics , 2021, 34(6): 761-768. doi: 10.1063/1674-0068/cjcp2110183

$ \mathit{{Ab}} $ $ \mathit{{Initio}} $ Molecular Dynamics Simulation of Liquid Water with Fragment- based Quantum Mechanical Approach under Periodic Boundary Conditions

doi: 10.1063/1674-0068/cjcp2110183
More Information
  • Corresponding author: Xiao He, E-mail: xiaohe@phy.ecnu.edu.cn
  • Received Date: 2021-10-02
  • Accepted Date: 2021-11-08
  • Publish Date: 2021-12-27
  • In this study, we investigated the structural and dynamical properties of liquid water by using ab initio molecular dynamics simulation under periodic boundary conditions based on the fragment-based quantum mechanical approach. This study was carried out using the second-order Møller-Plesset perturbation theory (MP2) with the aug-cc-pVDZ basis set, which has been validated to be sufficiently accurate for describing water interactions. Diverse properties of liquid water, including radial distribution functions, diffusion coefficient, dipole moment, triplet oxygen-oxygen-oxygen angles, and hydrogen-bond structures, were simulated. This ab initio description leads to these properties in good agreement with experimental observations. This computational approach is general and transferable, providing a comprehensive framework for ab initio predictions of properties of condensed-phase matters.

     

    In this study, we investigated the structural and dynamical properties of liquid water by using ab initio molecular dynamics simulation under periodic boundary conditions based on the fragment-based quantum mechanical approach. This study was carried out using the second-order Møller-Plesset perturbation theory (MP2) with the aug-cc-pVDZ basis set, which has been validated to be sufficiently accurate for describing water interactions. Diverse properties of liquid water, including radial distribution functions, diffusion coefficient, dipole moment, triplet oxygen-oxygen-oxygen angles, and hydrogen-bond structures, were simulated. This ab initio description leads to these properties in good agreement with experimental observations. This computational approach is general and transferable, providing a comprehensive framework for ab initio predictions of properties of condensed-phase matters.
  • Part of Special Issue "John Z.H. Zhang Festschrift for celebrating his 60th birthday".
  • loading
  • [1]
    J. C. Palmer, P. H. Poole, F. Sciortino, and P. G. Debenedetti, Chem. Rev. 118, 9129 (2018). doi: 10.1021/acs.chemrev.8b00228
    [2]
    Y. Ding, A. A. Hassanali, and M. Parrinello, Proc. Natl. Acad. Sci. USA 111, 3310 (2014). doi: 10.1073/pnas.1400675111
    [3]
    J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001). doi: 10.1038/35053024
    [4]
    C. A. Angell, Science 319, 582 (2008). doi: 10.1126/science.1131939
    [5]
    P. Ball, Chem. Rev. 108, 74 (2008). doi: 10.1021/cr068037a
    [6]
    Y. Marcus, Chem. Rev. 109, 1346 (2009). doi: 10.1021/cr8003828
    [7]
    A. Hassanali, F. Giberti, J. Cuny, T. D. Kuhne, and M. Parrinello, Proc. Natl. Acad. Sci. USA 110, 13723 (2013). doi: 10.1073/pnas.1306642110
    [8]
    G. Stirnemann, E. Wernersson, P. Jungwirth, and D. Laage, J. Am. Chem. Soc. 135, 11824 (2013). doi: 10.1021/ja405201s
    [9]
    D. C. Clary, Science 351, 1268 (2016). doi: 10.1126/science.aaf5216
    [10]
    J. F. Liu, X. He, and J. Z. H. Zhang, Phys. Chem. Chem. Phys. 19, 11931 (2017). doi: 10.1039/C7CP00667E
    [11]
    T. Morawietz, A. Singraber, C. Dellago, and J. Behler, Proc. Natl. Acad. Sci. USA 113, 8368 (2016). doi: 10.1073/pnas.1602375113
    [12]
    O. Mishima and H. E. Stanley, Nature 396, 329 (1998). doi: 10.1038/24540
    [13]
    A. J. Stone, Science 315, 1228 (2007). doi: 10.1126/science.1140758
    [14]
    R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, Science 315, 1249 (2007). doi: 10.1126/science.1136371
    [15]
    J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Nature 510, 385 (2014). doi: 10.1038/nature13405
    [16]
    A. P. Gaiduk, J. Gustafson, F. Gygi, and G. Galli, J. Phys. Chem. Lett. 9, 3068 (2018). doi: 10.1021/acs.jpclett.8b01017
    [17]
    T. Ohto, M. Dodia, S. Imoto, and Y. Nagata, J. Chem. Theory Comput. 15, 595 (2019). doi: 10.1021/acs.jctc.8b00567
    [18]
    T. Urbic and K. A. Dill, J. Am. Chem. Soc. 140, 17106 (2018). doi: 10.1021/jacs.8b08856
    [19]
    T. Morawietz, O. Marsalek, S. R. Pattenaude, L. M. Streacker, D. Ben-Amotz, and T. E. Markland, J. Phys. Chem. Lett. 9, 851 (2018). doi: 10.1021/acs.jpclett.8b00133
    [20]
    A. Luzar and D. Chandler, Phys. Rev. Lett. 76, 928 (1996). doi: 10.1103/PhysRevLett.76.928
    [21]
    G. Miceli, J. Hutter, and A. Pasquarello, J. Chem. Theory Comput. 12, 3456 (2016). doi: 10.1021/acs.jctc.6b00271
    [22]
    L. X. Zheng, M. H. Chen, Z. R. Sun, H. Y. Ko, B. Santra, P. Dhuvad, and X. F. Wu, J. Chem. Phys. 148, 164505 (2018). doi: 10.1063/1.5023611
    [23]
    F. Ambrosio, G. Miceli, and A. Pasquarello, J. Phys. Chem. B 120, 7456 (2016). doi: 10.1021/acs.jpcb.6b03876
    [24]
    D. Laage and J. T. Hynes, Science 311, 832 (2006). doi: 10.1126/science.1122154
    [25]
    A. Tokmakoff, Science 317, 54 (2007). doi: 10.1126/science.1144515
    [26]
    G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput. 10, 2906 (2014). doi: 10.1021/ct5004115
    [27]
    B. Q. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, Proc. Natl. Acad. Sci. USA 116, 1110 (2019). doi: 10.1073/pnas.1815117116
    [28]
    J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005). doi: 10.1063/1.1828433
    [29]
    R. A. DiStasio, B. Santra, Z. F. Li, X. F. Wu, and R. Car, J. Chem. Phys. 141, 084502 (2014). doi: 10.1063/1.4893377
    [30]
    A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). doi: 10.1103/PhysRevLett.102.073005
    [31]
    M. Chen, H. Y. Ko, R. C. Remsing, M. F. C. Andrade, B. Santra, Z. R. Sun, A. Selloni, R. Car, M. L. Klein, P J. P. erdew, and X. F. Wu, Proc. Natl. Acad. Sci. USA 114, 10846 (2017). doi: 10.1073/pnas.1712499114
    [32]
    A. P. Gaiduk, F. Gygi, and G. Galli, J. Phys. Chem. Lett. 6, 2902 (2015). doi: 10.1021/acs.jpclett.5b00901
    [33]
    J. Wang, G. Roman-Perez, J. M. Soler, E. Artacho, and M. V. Fernandez-Serra, J. Chem. Phys. 134, 024516 (2011).
    [34]
    M. J. Gillan, D. Alfe, and A. Michaelides, J. Chem. Phys. 144, 130901 (2016). doi: 10.1063/1.4944633
    [35]
    S. Yoo, X. C. Zeng, and S. S. Xantheas, J. Chem. Phys. 130, 221102 (2009). doi: 10.1063/1.3153871
    [36]
    S. Yoo and S. S. Xantheas, J. Chem. Phys. 134, 121105 (2011). doi: 10.1063/1.3573375
    [37]
    M. J. McGrath, J. I. Siepmann, I. F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack, J. Phys. Chem. A 110, 640 (2006). doi: 10.1021/jp0535947
    [38]
    S. Y. Willow, M. A. Salim, K. S. Kim, and S. Hirata, Sci. Rep. 5, 14358 (2015). doi: 10.1038/srep14358
    [39]
    T. Spura, C. John, S. Habershon, and T. D. Kuhne, Mol. Phys. 113, 808 (2015). doi: 10.1080/00268976.2014.981231
    [40]
    L. P. Wang, J. H. Chen, and T. Van Voorhis, J. Chem. Theory Comput. 9, 452 (2013). doi: 10.1021/ct300826t
    [41]
    L. P. Wang, T. J. Martinez, and V. S. Pande, J. Phys. Chem. Lett. 5, 1885 (2014). doi: 10.1021/jz500737m
    [42]
    Y. M. Wang and J. M. Bowman, Chem. Phys. Lett. 491, 1 (2010). doi: 10.1016/j.cplett.2010.03.025
    [43]
    A. P. Bartok, M. J. Gillan, F. R. Manby, and G. Csanyi, Phys. Rev. B 88, 054104 (2013). doi: 10.1103/PhysRevB.88.054104
    [44]
    J. F. Liu, T. Zhu, X. W. Wang, X. He, and J. Z. H. Zhang, J. Chem. Theory Comput. 11, 5897 (2015). doi: 10.1021/acs.jctc.5b00558
    [45]
    X. Wang, J. Liu, J. Z. H. Zhang, and X. He, J. Phys. Chem. A 117, 7149 (2013). doi: 10.1021/jp400779t
    [46]
    X. He, T. Zhu, X. W. Wang, J. F. Liu, and J. Z. H. Zhang, Acc. Chem. Res. 47, 2748 (2014). doi: 10.1021/ar500077t
    [47]
    J. F. Liu, J. Z. H. Zhang, and X. He, Phys. Chem. Chem. Phys. 18, 1864 (2016). doi: 10.1039/C5CP05693D
    [48]
    J. F. Liu, X. W. Wang, J. Z. H. Zhang, and X. He, Rsc Adv. 5, 107020 (2015). doi: 10.1039/C5RA20185C
    [49]
    J. F. Liu, L. W. Qi, J. Z. H. Zhang, and X. He, J. Chem. Theory Comput. 13, 2021 (2017). doi: 10.1021/acs.jctc.7b00149
    [50]
    J. F. Liu and X. He, Phys. Chem. Chem. Phys. 22, 12341 (2020). doi: 10.1039/D0CP01095B
    [51]
    J. F. Liu, Y. Q. Liu, J. R. Yang, X. C. Zeng, and X. He, J. Phys. Chem. Lett. 12, 3379 (2021). doi: 10.1021/acs.jpclett.1c00448
    [52]
    J. F. Liu, J. R. Yang, X. C. Zeng, S. S. Xantheas, K. Yagi, and X. He, Nat. Commun. 12, 6141 (2021). doi: 10.1038/s41467-021-26284-x
    [53]
    J. F. Liu, X. He, J. Z. H. Zhang, and L. W. Qi, Chem. Sci. 9, 2065 (2018). doi: 10.1039/C7SC04205A
    [54]
    J. F. Liu, J. Z. H. Zhang, and X. He, J. Phys. Chem. B 122, 10202 (2018). doi: 10.1021/acs.jpcb.8b09513
    [55]
    J. F. Liu and X. He, Phys. Chem. Chem. Phys. 19, 20657 (2017). doi: 10.1039/C7CP03356G
    [56]
    Q. N. Lu, X. He, W. X. Hu, X. J. Chen, and J. F. Liu, J. Phys. Chem. C 123, 12052 (2019). doi: 10.1021/acs.jpcc.8b11586
    [57]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, Rendell, A. J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B. 01, Wallingford CT: Gaussian Inc., (2010).
    [58]
    Y. J. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 124, 024503 (2006). doi: 10.1063/1.2136877
    [59]
    D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, J. Comput. Chem. 26, 1668 (2005). doi: 10.1002/jcc.20290
    [60]
    R. W. Pastor, B. R. Brooks, and A. Szabo, Mol. Phys. 65, 1409 (1988). doi: 10.1080/00268978800101881
    [61]
    L. B. Skinner, C. C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nilsson, and C. J. Benmore, J. Chem. Phys. 138, 074506 (2013). doi: 10.1063/1.4790861
    [62]
    A. K. Soper and C. J. Benmore, Phys. Rev. Lett. 101, 065502 (2008). doi: 10.1103/PhysRevLett.101.065502
    [63]
    A. Zeidler, P. S. Salmon, H. E. Fischer, J. C. Neuefeind, J. M. Simonson, and T. E. Markland, J. Phys. : Condens. Mat. 24, 284126 (2012). doi: 10.1088/0953-8984/24/28/284126
    [64]
    O. Marsalek and T. E. Markland, J. Phys. Chem. Lett. 8, 1545 (2017). doi: 10.1021/acs.jpclett.7b00391
    [65]
    P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, Science 304, 995 (2004). doi: 10.1126/science.1096205
    [66]
    M. Holz, S. R. Heil, and A. Sacco, Phys. Chem. Chem. Phys. 2, 4740 (2000). doi: 10.1039/b005319h
    [67]
    K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993). doi: 10.1063/1.465574
    [68]
    P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999). doi: 10.1103/PhysRevLett.82.3308
    [69]
    Y. Q. Tu, Chem. Phys. Lett. 329, 283 (2000). doi: 10.1016/S0009-2614(00)01026-5
    [70]
    J. K. Gregory, D. C. Clary, K. Liu, M. G. Brown, and R. J. Saykally, Science 275, 814 (1997). doi: 10.1126/science.275.5301.814
    [71]
    Y. S. Badyal, M. L. Saboungi, D. L. Price, S. D. Shastri, D. R. Haeffner, and A. K. Soper, J. Chem. Phys. 112, 9206 (2000). doi: 10.1063/1.481541
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (443) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return