Turn off MathJax
Article Contents
Talha Ijaz, Qi Bian, Yan Cao, Haoxuan Ding, Xiaorui Chen, Huan Lu, Shu Yang, Xueting Xing, Simin Fang, Mengyuan Liu, Xin Zhang, Jianzhi Gao, Minghu Pan. Probing Optical Propagation of Exciton Polaritons in Ultrathin van der Waals Microcrystals down to Few Monolayers[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303024
Citation: Talha Ijaz, Qi Bian, Yan Cao, Haoxuan Ding, Xiaorui Chen, Huan Lu, Shu Yang, Xueting Xing, Simin Fang, Mengyuan Liu, Xin Zhang, Jianzhi Gao, Minghu Pan. Probing Optical Propagation of Exciton Polaritons in Ultrathin van der Waals Microcrystals down to Few Monolayers[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303024

Probing Optical Propagation of Exciton Polaritons in Ultrathin van der Waals Microcrystals down to Few Monolayers

doi: 10.1063/1674-0068/cjcp2303024
More Information
  • The exciton polariton is a kind of quasiparticles and provides a promising opportunity to explore fundamental quantum phenomena for photonic applications. Transition-metal dichalcogenide (TMD) materials provide the platform of nanophotonics that supports the propagative exciton polaritons even at room-temperature. Previously, real space studies on thin flakes of TMDs by scattering-type scanning nearfield optical microscopy (s-SNOM) were limited to waveguide thickness down to 30 nm. In this work, we present the nano-optical imaging of ordinary transverse electric modes of exciton polaritons in MoS2 and WSe2 down to a few atomic layers, measured by atomic force microscope-based s-SNOM. Surprisingly, the interference fringe patterns can be observed clearly at the prepared ultrathin TMD flakes with thickness down to ~3 nm (4 ML) and ~8 nm (12 ML) for MoS2 and WSe2, respectively, which breaks greatly the previous measurement limitation. The wavevectors stay around 1.6–1.7k0 constantly when the thickness approaching to a few MLs, instead of 1k0 according to the theory. These modes are supported by the nearly-freestanding TMD microflakes in the form of three-layer symmetric waveguide to confine the exciton polaritons. Our results provide in-depth understanding and open new avenues to explore the polaritonic devices operating at the near infrared region based on ultrathin TMD materials.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005). doi: 10.1073/pnas.0502848102
    [2]
    T. Kimura and Y. Tokura, Annu. Rev. Mater. Sci. 30, 451 (2000). doi: 10.1146/annurev.matsci.30.1.451
    [3]
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805
    [4]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010). doi: 10.1021/nl903868w
    [5]
    X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). doi: 10.1103/RevModPhys.83.1057
    [6]
    J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, Nat. Commun. 5, 5221 (2014). doi: 10.1038/ncomms6221
    [7]
    S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, Nat. Commun. 6, 6963 (2015). doi: 10.1038/ncomms7963
    [8]
    P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Nat. Commun. 6, 7507 (2015). doi: 10.1038/ncomms8507
    [9]
    E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Nat. Photonics 9, 674 (2015). doi: 10.1038/nphoton.2015.166
    [10]
    E. E. Narimanov and A. V. Kildishev, Nat. Photonics 9, 214 (2015). doi: 10.1038/nphoton.2015.56
    [11]
    H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S.-C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, Nat. Nanotechnol. 10, 707 (2015). doi: 10.1038/nnano.2015.112
    [12]
    F. Xia, H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014). doi: 10.1038/ncomms5458
    [13]
    J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014). doi: 10.1038/ncomms5475
    [14]
    N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Phys. Rev. Lett. 101, 046601 (2008). doi: 10.1103/PhysRevLett.101.046601
    [15]
    W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014). doi: 10.1038/nnano.2014.214
    [16]
    B. Raes, J. E. Scheerder, M. V. Costache, F. Bonell, J. F. Sierra, J. Cuppens, J. Van de Vondel, and S. O. Valenzuela, Nat. Commun. 7, 11444 (2016). doi: 10.1038/ncomms11444
    [17]
    H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012). doi: 10.1038/nnano.2012.95
    [18]
    K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012). doi: 10.1038/nnano.2012.96
    [19]
    F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Nat. Mater. 14, 301 (2015). doi: 10.1038/nmat4205
    [20]
    C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, Nat. Commun. 7, 12978 (2016). doi: 10.1038/ncomms12978
    [21]
    A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Nat. Mater. 14, 421 (2015). doi: 10.1038/nmat4169
    [22]
    X. Yang, F. Zhai, H. Hu, D. Hu, R. Liu, S. Zhang, M. Sun, Z. Sun, J. Chen, and Q. Dai, Adv. Mater. 28, 2931 (2016). doi: 10.1002/adma.201505765
    [23]
    J. D. Caldwell and K. S. Novoselov, Nat. Mater. 14, 364 (2015). doi: 10.1038/nmat4252
    [24]
    M. Massicotte, P. Schmidt, F. Vialla, K. G. Schädler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, Nat. Nanotechnol. 11, 42 (2016). doi: 10.1038/nnano.2015.227
    [25]
    D. Hu, X. Yang, C. Li, R. Liu, Z. Yao, H. Hu, S. N. G. Corder, J. Chen, Z. Sun, M. Liu, and Q. Dai, Nat. Commun. 8, 1471 (2017). doi: 10.1038/s41467-017-01580-7
    [26]
    F. Hu, Y. Luan, J. Speltz, D. Zhong, C. H. Liu, J. Yan, D. G. Mandrus, X. Xu, and Z. Fei, Phys. Rev. B 100, 121301 (2019). doi: 10.1103/PhysRevB.100.121301
    [27]
    Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012). doi: 10.1038/nature11253
    [28]
    J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature 487, 77 (2012). doi: 10.1038/nature11254
    [29]
    S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, Science 343, 1125 (2014). doi: 10.1126/science.1246833
    [30]
    C. Lee, Q. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Science 328, 76 (2010). doi: 10.1126/science.1184167
    [31]
    R. F. Frindt, J. Appl. Phys. 37, 1928 (1966). doi: 10.1063/1.1708627
    [32]
    A. Kumar and P. K. Ahluwalia, Phys. B Condens. Matter 407, 4627 (2012). doi: 10.1016/j.physb.2012.08.034
    [33]
    A. Molina-Sánchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011). doi: 10.1103/PhysRevB.84.155413
    [34]
    T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012). doi: 10.1103/PhysRevB.85.205302
    [35]
    D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, Nano Lett. 15, 8136 (2015). doi: 10.1021/acs.nanolett.5b03575
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (163) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return