Turn off MathJax
Article Contents

Tai-ran Wang, Jian-cong Li, Wu Shu, Su-lei Hu , Run-hai Ouyang , Wei-Xue Li . Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening[J]. Chinese Journal of Chemical Physics .
Citation: Tai-ran Wang, Jian-cong Li, Wu Shu, Su-lei Hu , Run-hai Ouyang , Wei-Xue Li . Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening[J]. Chinese Journal of Chemical Physics .

Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening

  • Accepted Date: 2020-07-02
  • Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60,000 adsorption data. Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(24) PDF downloads(2) Cited by()

Proportional views
Related

Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening

Abstract: Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60,000 adsorption data. Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts.

Tai-ran Wang, Jian-cong Li, Wu Shu, Su-lei Hu , Run-hai Ouyang , Wei-Xue Li . Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening[J]. Chinese Journal of Chemical Physics .
Citation: Tai-ran Wang, Jian-cong Li, Wu Shu, Su-lei Hu , Run-hai Ouyang , Wei-Xue Li . Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening[J]. Chinese Journal of Chemical Physics .

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return