Turn off MathJax
Article Contents

Fei Xu, Yuxin Tan, Daofu Yuan, Wentao Chen, Shengrui Yu, Ting Xie, Tao Wang, Xueminig Yang, Xingan Wang. Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel[J]. Chinese Journal of Chemical Physics .
Citation: Fei Xu, Yuxin Tan, Daofu Yuan, Wentao Chen, Shengrui Yu, Ting Xie, Tao Wang, Xueminig Yang, Xingan Wang. Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel[J]. Chinese Journal of Chemical Physics .

Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel

Funds:

This work was supported by the National Key R&D Program of China, (Grant No. 2017YFF0104500), the National Natural Science Foundation of China (Grant Nos. 21473173, 21590802, 21673216, 21773213), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB17000000). We thank Bin Jiang and Xiaoguo Zhou for helpful discussions.

  • Received Date: 2020-09-13
    Available Online: 2020-11-20
  • The vacuum ultraviolet (VUV) photodissociation of OCS via the F 31Π Rydberg states was investigated in the range of 134–140 nm, by means of the time-sliced velocity map ion imaging technique. The images of S (1D2) products from the CO (X1Σ+) + S (1D2) dissociation channel were acquired at five photolysis wavelengths, corresponding to a series of symmetric stretching vibrational excitations in OCS (F 31Π, v1=0-4). The total translational energy distributions, vibrational populations and angular distributions of CO (X1Σ+, v) coproducts were derived. The analysis of experimental results suggests that the excited OCS molecules dissociate to CO (X1Σ+) and S (1D2) products via non-adiabatic couplings between the upper F 31Π states and the lower-lying states both in the C∞v and Cs symmetry. Furthermore, strong wavelength dependent behavior has been observed: the greatly distinct vibrational populations and angular distributions of CO (X1Σ+, v) products from the lower (v1=0-2) and higher (v1=3,4) vibrational states of the excited OCS (F 31Π, v1) demonstrate that very different mechanisms are involved in the dissociation processes. This study provides evidence for the possible contribution of vibronic coupling and the crucial role of vibronic coupling on the VUV photodissociation dynamics.

  • [1] W. Wardencki, J. Chromatogr. A 793, 1-19 (1998).
    [2] R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, Science 225, 423-430 (1992).
    [3] M. O. Andreae and P. J. Crutzen, Science 276, 1052-1058 (1997).
    [4] H. Katayanagi, Y. X. Mo, T. Suzuki, Chem. Phys. Lett. 247, 571-576 (1995).
    [5] R. P. Turco, R. C. Whitten and O. B. Toon, Nature 283, 283-286 (1980).
    [6] T. Suzuki, H. Katayanagi, S. Nanbu and M. Aoyagi, J. Chem. Phys. 109, 5778-5794 (1998).
    [7] N. Sivakumar, G. E. Hall, P. L. Houston, J. W. Hepburn and I. Burak, J. Chem. Phys. 88, 3692-3708 (1988).
    [8] G. Nan, I. Burak and P. L. Houston, Chem. Phys. Lett. 209, 383-389 (1993).
    [9] Y. Sato, Y. Matsumi, M. Kawasaki, K. Tsukiyama, and R. Bersohn, J. Phys. Chem. 99, 16307-16314 (1995).
    [10] S. K. Lee, R. Silva, S. Thamanna, O. S. Vasyutinskii and A. G. Suits, J. Chem. Phys. 125, 144318 (2006).
    [11] G. Black, R. L. Sharpless, T. G. Sianger, and D. C. Lorents, J. Chem. Phys. 62, 4274-4277 (1975).
    [12] G. Black and R. L. Sharpless, J. Chem. Phys. 70, 5567-5570 (1979).
    [13] C. E. Strauss, G. C. McBane, P. L. Houston, I. Burak and J. W. Hepburn, J. Chem. Phys. 90, 5364-5372 (1989).
    [14] S. M. Wu, X. M. Yang and D. H. Parker, Mol. Phys. 103, 1797-1807 (2005).
    [15] R. Itakura, A. Hishikawa and K. Yamanouchi, J. Chem. Phys. 113, 6598-6607 (2000).
    [16] S. R. Yu, D. F. Yuan, W. T. Chen, T. Xie, S. W. Wang, X. M. Yang, X. A. Wang, Chin. J. Chem. Phys. 29, 135-139 (2016).
    [17] D. F. Yuan, S. R. Yu, W. T. Chen, T. Xie, X. M. Yang, and X. A. Wang, J. Phys. Chem. A 120, 4966-4972 (2016).
    [18] S. R. Yu, D. F. Yuan, W. T. Chen, X. M. Yang and X. A. Wang, J. Phys. Chem. A 119, 8090-8096 (2015).
    [19] W. T. Chen, S. R. Yu, D. F. Yuan, T. Xie, J. Y. Yang, S. W. Wang, C. Luo, Y. X. Tan, Y. Miao, W. Q. Zhang, G. R. Wu, X. M. Yang and X. A. Wang, Chin. J. Chem. Phys. 30, 609-613 (2017).
    [20] J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson and J. P. Connerade, J. Opt. Soc. Am. B 7, 1254-1259 (1990).
    [21] C. Cossart-Magos, M. Jungen, R. Xu and F. Launay, J. Chem. Phys. 119, 3219-3233 (2003).
    [22] K. Sunanda, B. N. Rajasekhar, P. Saraswathy and B. N. Jagatap, J. Quant. Spectrosc. Radiat. Transfer 113, 58-66 (2012).
    [23] J. A. Schmidt, M. S. Johnson, G. C. McBane and R. Schinke, J. Chem. Phys. 137, 054313 (2012).
    [24] J. A. Schmidt and J. M. H. Olsen, J. Chem. Phys. 141, 184310 (2014).
    [25] W. T. Chen, L. Zhang, D. F. Yuan, Y. Chang, S. R. Yu, S. W. Wang, T. Wang, B. Jiang, K. J. Yuan, X. M, Yang, and X. A. Wang, J. Phys. Chem. Lett. 10, 4783-4787 (2019).
    [26] J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 136,131101 (2012).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(28) PDF downloads(12) Cited by()

Proportional views
Related

Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel

Funds:

This work was supported by the National Key R&D Program of China, (Grant No. 2017YFF0104500), the National Natural Science Foundation of China (Grant Nos. 21473173, 21590802, 21673216, 21773213), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB17000000). We thank Bin Jiang and Xiaoguo Zhou for helpful discussions.

Abstract: 

The vacuum ultraviolet (VUV) photodissociation of OCS via the F 31Π Rydberg states was investigated in the range of 134–140 nm, by means of the time-sliced velocity map ion imaging technique. The images of S (1D2) products from the CO (X1Σ+) + S (1D2) dissociation channel were acquired at five photolysis wavelengths, corresponding to a series of symmetric stretching vibrational excitations in OCS (F 31Π, v1=0-4). The total translational energy distributions, vibrational populations and angular distributions of CO (X1Σ+, v) coproducts were derived. The analysis of experimental results suggests that the excited OCS molecules dissociate to CO (X1Σ+) and S (1D2) products via non-adiabatic couplings between the upper F 31Π states and the lower-lying states both in the C∞v and Cs symmetry. Furthermore, strong wavelength dependent behavior has been observed: the greatly distinct vibrational populations and angular distributions of CO (X1Σ+, v) products from the lower (v1=0-2) and higher (v1=3,4) vibrational states of the excited OCS (F 31Π, v1) demonstrate that very different mechanisms are involved in the dissociation processes. This study provides evidence for the possible contribution of vibronic coupling and the crucial role of vibronic coupling on the VUV photodissociation dynamics.

Fei Xu, Yuxin Tan, Daofu Yuan, Wentao Chen, Shengrui Yu, Ting Xie, Tao Wang, Xueminig Yang, Xingan Wang. Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel[J]. Chinese Journal of Chemical Physics .
Citation: Fei Xu, Yuxin Tan, Daofu Yuan, Wentao Chen, Shengrui Yu, Ting Xie, Tao Wang, Xueminig Yang, Xingan Wang. Wavelength dependent photodissociation of OCS via the F 31Π Rydberg state: the CO (X1Σ+) + S (1D2) product channel[J]. Chinese Journal of Chemical Physics .
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return