Turn off MathJax
Article Contents

Yanjun Hou, Xuan Zheng, Hongmei Zhong, Feng Chen, Guiyang Yan, Kaicong Cai. Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors[J]. Chinese Journal of Chemical Physics .
Citation: Yanjun Hou, Xuan Zheng, Hongmei Zhong, Feng Chen, Guiyang Yan, Kaicong Cai. Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors[J]. Chinese Journal of Chemical Physics .

Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors

Funds:

This work was financially supported by the National Natural Science Foundation of China (21103021), the New Century Excellent Talent Project in University of Fujian Province, Opening Project of PCOSS, Xiamen University (201904).

  • Received Date: 2020-09-17
    Available Online: 2020-11-20
  • The interaction between Amyloid β (Aβ) peptide and acetylcholine receptor is the key for our understanding of how Aβ fragments block the ion channels within the synapses and thus induce Alzheimer's disease. Here, molecular docking and molecular dynamics (MD) simulations were performed for the structural dynamics of the docking complex consists of Aβ and α7-nAChR (α7 nicotinic acetylcholine receptor), and the inter-molecular interactions between ligand and receptor were revealed. The results show that Aβ25-35 bound to α7-nAChR through hydrogen bonds and complementary shape, and the Aβ25-35 fragments would easily assemble in the ion channel of α7-nAChR, then block the ion transfer process and induce neuronal apoptosis. The simulated amide-I band of Aβ25-35 in the complex is located at 1650.5 cm-1, indicating the backbone of Aβ25-35 tends to present random coil conformation, which is consistent with the result obtained from cluster analysis. Currently existed drugs were used as templates for virtual screening, eight new drugs were designed and semi-flexible docking was performed for their performance. The results show that, the interactions between new drugs and α7-nAChR are strong enough to inhibit the aggregation of Aβ25-35 fragments in the ion channel, and also be of great potential in the treatment of Alzheimer's disease.

  • [1] X. Zhou; Y. Chen; K. Y. Mok et al., Proc. Natl. Acad. Sci. USA 115, 1697 (2018).
    [2] M. Lorenzi; A. Altmann; B. Gutman et al., Proc. Natl. Acad. Sci. USA 115, 3162 (2018).
    [3] D. D. Chu; F. Liu, Acs Chemical Neuroscience 10, 931 (2019).
    [4] C. M. Dobson, Trends Biochem. Sci. 24, 329 (1999).
    [5] C. M. Dobson, Nature 426, 884 (2003).
    [6] M. Stefani; C. M. Dobson, Journal of Molecular Medicine-Jmm 81, 678 (2003).
    [7] A. S. DeToma; S. Salamekh; A. Ramamoorthy et al., Chem. Soc. Rev. 41, 608 (2012).
    [8] S. Parthasarathy; M. Inoue; Y. Xiao et al., J. Am. Chem. Soc. 137, 6480 (2015).
    [9] A. S.-Y. Law; L. C.-C. Lee; M. C.-L. Yeung et al., J. Am. Chem. Soc. 141, 18570 (2019).
    [10] I. W. Hamley, Angew. Chem.-Int. Edit. 46, 8128 (2007).
    [11] K. Kurbatskaya; E. C. Phillips; C. L. Croft et al., Acta Neuropathol. Commun. 4, 34 (2016).
    [12] C. M. Henstridge; E. Pickett; T. L. Spires-Jones, Ageing Res. Rev. 28, 72 (2016).
    [13] C. Wallin; Y. Hiruma; S. K. T. S. Wärmländer et al., J. Am. Chem. Soc. 140, 8138 (2018).
    [14] N. J. Economou; M. J. Giammona; T. D. Do et al., J. Am. Chem. Soc. 138, 1772 (2016).
    [15] B. Murray; B. Sharma; G. Belfort, Acs Chemical Neuroscience 8, 432 (2017).
    [16] C. J. Pike; A. J. Walencewicz-Wasserman; J. Kosmoski et al., J. Neurochem. 64, 253 (1995).
    [17] A. M. D'Ursi; M. R. Armenante; R. Guerrini et al., J. Med. Chem. 47, 4231 (2004).
    [18] E. Terzi; G. Hoelzemann; J. Seelig, Biochemistry 33, 7434 (1994).
    [19] T. Kohno; K. Kobayashi; T. Maeda et al., Biochemistry 35, 16094 (1996).
    [20] M. del Mar Martínez-Senac; J. Villalaín; J. C. Gómez-Fernández, Eur. J. Biochem. 265, 744 (1999).
    [21] Q. S. Liu; H. Kawai; D. K. Berg, Proc. Natl. Acad. Sci. USA 98, 4734 (2001).
    [22] D. Bertrand; J. L. Galzi; A. Devillers-Thiéry et al., Proceedings of the National Academy of Sciences 90, 6971 (1993).
    [23] K. T. Dineley; A. A. Pandya; J. L. Yakel, Trends Pharmacol. Sci. 36, 96 (2015).
    [24] H. Lin; S. Vicini; F. C. Hsu et al., Proc. Natl. Acad. Sci. USA 107, 16661 (2010).
    [25] L. A. Mohamed; H. Qosa; A. Kaddoumi, Acs Chemical Neuroscience 6, 725 (2015).
    [26] M. Criado; J. Mulet; F. Sala et al., Acs Chemical Neuroscience 7, 1157 (2016).
    [27] A. K. Hamouda; T. Kimm; J. B. Cohen, J. Neurosci. 33, 485 (2013).
    [28] W. Qiang; W.-M. Yau; J.-X. Lu et al., Nature 541, 217 (2017).
    [29] S. D. Moran; M. T. Zanni, J Phys. Chem. L 5, 1984 (2014).
    [30] A. M. Alperstein; J. S. Ostrander; T. O. Zhang et al., Proc. Natl. Acad. Sci. USA 201821534 (2019).
    [31] M. K. Petti; J. P. Lomont; M. Maj et al., J. Phys. Chem. B 122, 1771 (2018).
    [32] M. C. Asplund; M. T. Zanni; R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
    [33] A. Remorino; R. M. Hochstrasser, Acc. Chem. Res. 45, 1896 (2012).
    [34] C. R. Baiz; B. Błasiak; J. Bredenbeck et al., Chem. Rev. 120, 7152 (2020).
    [35] K. Cai; T. Su; S. Lin et al., Spectrochim. Acta, Part A 117, 548 (2014).
    [36] K. Cai; F. Du; X. Zheng et al., J. Phys. Chem. B 120, 1069 (2016).
    [37] K. Cai; X. Zheng; F. Du, Spectrochim. Acta, Part A 183, 150 (2017).
    [38] K. Cai; X. Zheng; J. Liu et al., Spectrochim. Acta, Part A 219, 391 (2019).
    [39] J. K. Carr; A. V. Zabuga; S. Roy et al., J. Chem. Phys. 140, 224111 (2014).
    [40] C.-J. Feng; A. Tokmakoff, J. Chem. Phys. 147, 085101 (2017).
    [41] A. Ghosh; J. S. Ostrander; M. T. Zanni, Chem. Rev. 117, 10726 (2017).
    [42] M. Reppert; A. Tokmakoff, Annu. Rev. Phys. Chem. 67, 359 (2016).
    [43] J. C. Phillips; R. Braun; W. Wang et al., J. Comput. Chem. 26, 1781 (2005).
    [44] A. D. MacKerell, Jr.; D. Bashford; M. Bellott et al., J. Phys. Chem. B 102, 3586 (1998).
    [45] A. D. MacKerell, Jr.; M. Feig; C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
    [46] W. L. Jorgensen; J. Chandrasekhar; J. D. Madura et al., J. Chem. Phys. 79, 926 (1983).
    [47] B. R. Miller; T. D. McGee; J. M. Swails et al., J. Chem. Theory Comput. 8, 3314 (2012).
    [48] D. A. Case; T. E. Cheatham; T. Darden et al., J. Comput. Chem. 26, 1668 (2005).
    [49] K. Cai; X. Zheng; Y. Liu et al., Acta Phys. -Chim. Sin. 32, 1289 (2016).
    [50] L. C. Mayne; B. Hudson, J. Phys. Chem. 95, 2962 (1991).
    [51] M. J. Frisch; G. W. Trucks; H. B. Schlegel et al., Gaussian 09, Revision A.01, Gaussian Inc., Wallingford CT., (2009).
    [52] M. H. Jamroz, Spectrochim. Acta, Part A 114, 220 (2013).
    [53] S. Pronk; S. Pall; R. Schulz et al., Bioinformatics 29, 845 (2013).
    [54] W. Humphrey; A. Dalke; K. Schulten, J. Mol. Graphics 14, 33 (1996).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(52) PDF downloads(23) Cited by()

Proportional views
Related

Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors

Funds:

This work was financially supported by the National Natural Science Foundation of China (21103021), the New Century Excellent Talent Project in University of Fujian Province, Opening Project of PCOSS, Xiamen University (201904).

Abstract: 

The interaction between Amyloid β (Aβ) peptide and acetylcholine receptor is the key for our understanding of how Aβ fragments block the ion channels within the synapses and thus induce Alzheimer's disease. Here, molecular docking and molecular dynamics (MD) simulations were performed for the structural dynamics of the docking complex consists of Aβ and α7-nAChR (α7 nicotinic acetylcholine receptor), and the inter-molecular interactions between ligand and receptor were revealed. The results show that Aβ25-35 bound to α7-nAChR through hydrogen bonds and complementary shape, and the Aβ25-35 fragments would easily assemble in the ion channel of α7-nAChR, then block the ion transfer process and induce neuronal apoptosis. The simulated amide-I band of Aβ25-35 in the complex is located at 1650.5 cm-1, indicating the backbone of Aβ25-35 tends to present random coil conformation, which is consistent with the result obtained from cluster analysis. Currently existed drugs were used as templates for virtual screening, eight new drugs were designed and semi-flexible docking was performed for their performance. The results show that, the interactions between new drugs and α7-nAChR are strong enough to inhibit the aggregation of Aβ25-35 fragments in the ion channel, and also be of great potential in the treatment of Alzheimer's disease.

Yanjun Hou, Xuan Zheng, Hongmei Zhong, Feng Chen, Guiyang Yan, Kaicong Cai. Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors[J]. Chinese Journal of Chemical Physics .
Citation: Yanjun Hou, Xuan Zheng, Hongmei Zhong, Feng Chen, Guiyang Yan, Kaicong Cai. Structural Dynamics of Amyloid β Peptide Binding to Acetylcholine Receptor and Virtual Screening for Effective Inhibitors[J]. Chinese Journal of Chemical Physics .
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return