Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Shu-hui Guan, Zhi-pan Liu. Theoretical Aspects on Doped-Zirconia for Solid Oxide Fuel Cells: from Structure to Conductivity[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 125-136. doi: 10.1063/1674-0068/cjcp2103044
Citation: Shu-hui Guan, Zhi-pan Liu. Theoretical Aspects on Doped-Zirconia for Solid Oxide Fuel Cells: from Structure to Conductivity[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 125-136. doi: 10.1063/1674-0068/cjcp2103044

Theoretical Aspects on Doped-Zirconia for Solid Oxide Fuel Cells: from Structure to Conductivity

doi: 10.1063/1674-0068/cjcp2103044
More Information
  • Corresponding author: Zhi-pan Liu, E-mail: zpliu@fudan.edu.cn
  • Received Date: 2021-03-14
  • Accepted Date: 2021-04-07
  • Available Online: 2021-04-14
  • Publish Date: 2021-04-27
  • Solid oxide fuel cells (SOFCs) are regarded to be a key clean energy system to convert chemical energy (e.g. H2 and O2) into electrical energy with high efficiency, low carbon footprint, and fuel flexibility. The electrolyte, typically doped zirconia, is the "state of the heart" of the fuel cell technologies, determining the performance and the operating temperature of the overall cells. Yttria stabilized zirconia (YSZ) have been widely used in SOFC due to its excellent oxide ion conductivity at high temperature. The composition and temperature dependence of the conductivity has been hotly studied in experiment and, more recently, by theoretical simulations. The characterization of the atomic structure for the mixed oxide system with different compositions is the key for elucidating the conductivity behavior, which, however, is of great challenge to both experiment and theory. This review presents recent theoretical progress on the structure and conductivity of YSZ electrolyte. We compare different theoretical methods and their results, outlining the merits and deficiencies of the methods. We highlight the recent results achieved by using stochastic surface walking global optimization with global neural network potential (SSW-NN) method, which appear to agree with available experimental data. The advent of machine-learning atomic simulation provides an affordable, efficient and accurate way to understand the complex material phenomena as encountered in solid electrolyte. The future research directions for design better electrolytes are also discussed.


  • loading
  • [1]
    A. B. Stambouli and E. Traversa, Sust. Energ. Rev. 6, 433 (2002). doi: 10.1016/S1364-0321(02)00014-X
    B. C. Steele and A. Heinzel, Nature 414, 345 (2001). doi: 10.1038/35104620
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater. Sci 72, 141 (2015). doi: 10.1016/j.pmatsci.2015.01.001
    S. C. Singhal, Solid Oxide Fuel Cells 15, Pennington: Electrochemical Society Inc., 63 (2017).
    N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, and S. Assabumrungrat, Eng. J. 13, 65 (2009). doi: 10.4186/ej.2009.13.1.65
    N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay, and O. Parkash, J. Alloys. Compd. 781, 984 (2019). doi: 10.1016/j.jallcom.2018.12.015
    V. Kharton, F. Marques, and A. Atkinson, Solid State Ionics 174, 135 (2004). doi: 10.1016/j.ssi.2004.06.015
    P. Shuk, H. D. Wiemhofer, Ü. Guth, W. Gopel, and M. Greenblatt, Solid State Ionics 89, 179 (1996). doi: 10.1016/0167-2738(96)00348-7
    T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc. 116, 1994 (1994). doi: 10.1021/ja00084a045
    F. Lefebvre-Joud, G. Gauthier, and J. Mougin, J. Appl. Electrochem. 39, 535 (2009). doi: 10.1007/s10800-008-9744-7
    B. Zhu, X. Liu, P. Zhou, X. Yang, Z. Zhu, and W. Zhu, Electrochem. Commun. 3, 566 (2001). doi: 10.1016/S1388-2481(01)00222-3
    B. Zhu, S. Li, and B. E. Mellander, Electrochem. Commun. 10, 302 (2008). doi: 10.1016/j.elecom.2007.11.037
    T. Liu, X. F. Zhang, X. N. Wang, J. K. Yu, and L. Li, Ionics 22, 2249 (2016). doi: 10.1007/s11581-016-1880-1
    Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, Solid State Ionics 121, 133 (1999). doi: 10.1016/S0167-2738(98)00540-2
    V. V. Lakshmi, R. Bauri, A. S. Gandhi, and S. Paul, Int. J. Hydrog. Energy 36, 14936 (2011). doi: 10.1016/j.ijhydene.2011.02.139
    E. Ryshkewitch, Oxide Ceramics: Physical Chemistry and Technology, New York: Academic Press, 350 (1960).
    S. Fabris, A. T. Paxton, and M. W. Finnis, Acta Mater 50, 5171 (2002). doi: 10.1016/S1359-6454(02)00385-3
    A. Chroneos, B. Yildiz, A. Tarancón, D. Parfitt, and J. A. Kilner, Energ. Environ. Sci. 4, 2774 (2011). doi: 10.1039/c0ee00717j
    M. Jaipal and A. Chatterjee, J. Phys. Chem. C 121, 14534 (2017). doi: 10.1021/acs.jpcc.7b05329
    Z. Zakaria, S. H. Abu Hassan, N. Shaari, A. Z. Yahaya, and Y. Boon Kar, Int. J. Energ. Res. 44, 631 (2019).
    Z. Zakaria, Z. Awang Mat, S. H. Abu Hassan, and Y. Boon Kar, Int. J. Energ. Res. 44, 594 (2019).
    F. Oksuzomer, S. Vatansever, S. N. Koc, H. Deligoz, M. A. Gurkaynak, and M. Somer, Int. J. Appl. Ceram. Technol. 8, 42 (2011). doi: 10.1111/j.1744-7402.2009.02432.x
    S. T. Norberg, S. Hull, I. Ahmed, S. G. Eriksson, D. Marrocchelli, P. A. Madden, P. Li, and J. T. S. Irvine, System. Chem. Mater. 23, 1356 (2011). doi: 10.1021/cm102808k
    R. E. W. Casselton, Phys. Status Solidi A 2, 571 (1970). doi: 10.1002/pssa.19700020319
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970). doi: 10.1021/cr60265a003
    M. Rühle, Adv. Mater. 9, 195 (1997). doi: 10.1002/adma.19970090304
    O. Yamamoto, Y. Arachi, H. Sakai, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, and Y. Nakamura, Ionics 4, 403 (1998). doi: 10.1007/BF02375884
    B. Butz, P. Kruse, H. Stormer, D. Gerthsen, A. Muller, A. Weber, and E. Iverstiffee, Solid State Ionics 177, 3275 (2006). doi: 10.1016/j.ssi.2006.09.003
    J. Kondoh, T. Kawashima, S. Kikuchi, Y. Tomii, and Y. Ito, J. Electrochem. Soc. 145, 1527 (1998). doi: 10.1149/1.1838515
    F. T. Ciacchi and S. P. S. Badwal, J. Eur. Ceram. Soc. 7, 197 (1991). doi: 10.1016/0955-2219(91)90037-Z
    M. Hattori, Y. Takeda, J. H. Lee, S. Ohara, K. Mukai, T. Fukui, S. Takahashi, Y. Sakaki, and A. Nakanishi, J. Power Sources 131, 247 (2004). doi: 10.1016/j.jpowsour.2003.11.084
    B. Butz, R. Schneider, D. Gerthsen, M. Schowalter, and A. Rosenauer, Acta Mater. 57, 5480 (2009). doi: 10.1016/j.actamat.2009.07.045
    X. Guo and J. Maier, J. Electrochem. Soc. 148, E121 (2001). doi: 10.1149/1.1348267
    J. d. D. Solier, M. A. Perez-Jubindo, and H. Arturo, J. Am. Ceram. Soc. 72, 1500 (1989). doi: 10.1111/j.1151-2916.1989.tb07688.x
    Y. Li, J. H. Gong, Y. S. Xie, and Y. F. Chen, J. Mater. Sci. Lett. 21, 157 (2002). doi: 10.1023/A:1014253400747
    S. Komine and F. Munakata, J. Mater. Sci. 40, 3887 (2005). doi: 10.1007/s10853-005-3469-3
    A. Lakki, R. Herzog, M. Weller, H. Schubert, C. Reetz, O. Görke, M. Kilo, and G. Borchardt, J. Eur. Ceram. Soc. 20, 285 (2000). doi: 10.1016/S0955-2219(99)00162-4
    R. A. De Souza, M. J. Pietrowski, U. Anselmi-Tamburini, S. Kim, Z. A. Munir, and M. Martin, Phys. Chem. Chem. Phys 10, 2067 (2008). doi: 10.1039/b719363g
    S. D. Huang, C. Shang, P. L. Kang, X. J. Zhang, and Z. P. Liu, Wiley Interdiscip. Rev. : Comput. Mol. Sci. 9, e1415. (2019).
    M. A. Parkes, D. A. Tompsett, M. d'Avezac, G. J. Offer, N. P. Brandon, and N. M. Harrison, Phys. Chem. Chem. Phys. 18, 31277 (2016). doi: 10.1039/C6CP04694K
    R. Pornprasertsuk, P. Ramanarayanan, C. B. Musgrave, and F. B. Prinz, J. Appl. Phys. 99, 103513 (2005).
    A. Kushima and B. Yildiz, J. Mater. Chem. 20, 4809 (2010). doi: 10.1039/c000259c
    W. M. Kriven, A. L. Gyekenyesi, and J. Wang, Developments in Strategic Materials and Computational Design, Westerville: Amer Ceramic Soc., 193 (2011).
    R. Devanathan, W. Weber, S. Singhal, and J. Gale, Solid State Ionics 177, 1251 (2006). doi: 10.1016/j.ssi.2006.06.030
    W. Araki and Y. Arai, Solid State Ionics 181, 1534 (2010). doi: 10.1016/j.ssi.2010.08.023
    D. Marrocchelli, P. A. Madden, S. T. Norberg, and S. Hull, Chem. Mater. 23, 1365 (2011). doi: 10.1021/cm102809t
    K. S. Chang, Y. F. Lin, and K. L. Tung, J. Power Sources 196, 9322 (2011). doi: 10.1016/j.jpowsour.2011.07.085
    V. V. Sizov, M. J. Lampinen, and A. Laaksonen, Solid State Ionics 266, 29 (2014). doi: 10.1016/j.ssi.2014.08.003
    H. C. Huang, P. C. Su, S. K. Kwak, R. Pornprasertsuk, and Y. J. Yoon, Fuel Cells 14, 574 (2014). doi: 10.1002/fuce.201300227
    X. Li and B. Hafskjold, J. Phys. : Condens. Matter 7, 1255 (1995). doi: 10.1088/0953-8984/7/7/007
    C. Yang, K. Trachenko, S. Hull, I. T. Todorov, and M. T. Dove, Phys. Rev. B 97, 184107 (2018). doi: 10.1103/PhysRevB.97.184107
    H. W. Brinkman, W. J. Briels, and H. Verweij, Chem. Phys. Lett. 247, 386 (1995). doi: 10.1016/S0009-2614(95)01231-1
    G. V. Lewis and C. R. A. Catlow, J. Phys. Solid State Phys. 18, 1149 (1985). doi: 10.1088/0022-3719/18/6/010
    V. Butler, C. R. A. Catlow, and B. E. F. Fender, Solid State Ionics 5, 539 (1981). doi: 10.1016/0167-2738(81)90311-8
    A. N. Comack and C. R. A. Catlow, Transport in Nomtoichiometric Compounds, New York: Plenum Press, 101 (1985).
    P. K. Schelling, S. R. Phillpot, and D. Wolf, J. Am. Ceram. Soc. 84, 1609 (2001). doi: 10.1111/j.1151-2916.2001.tb00885.x/abstract
    K. C. Lau and B. I. Dunlap, J. Phys. : Condens. Matter 23, 035401 (2011). doi: 10.1088/0953-8984/23/3/035401
    S. D. Huang, C. Shang, X. J. Zhang, and Z. P. Liu, Chem. Sci. 8, 6327 (2017). doi: 10.1039/C7SC01459G
    S. H. Guan, C. Shang, and Z. P. Liu, J. Phys. Chem. C 124, 15085 (2020). doi: 10.1021/acs.jpcc.0c04331
    S. H. Guan, K. X. Zhang, C. Shang, and Z. P. Liu, J. Chem. Phys. 152, 094703 (2020). doi: 10.1063/1.5142591
    S. D. Huang, C. Shang, P. L. Kang, and Z. P. Liu, Chem. Sci. 9, 8644 (2018). doi: 10.1039/C8SC03427C
    S. H. Guan, C. Shang, S. D. Huang, and Z. P. Liu, J. Phys. Chem. C 122, 29009 (2018). doi: 10.1021/acs.jpcc.8b08896
    S. Ma, S. D. Huang, Y. H. Fang, and Z. P. Liu, ACS Appl. Energy Mater. 1, 22 (2018). doi: 10.1021/acsaem.7b00021
    S. C. Ma, S. D. Huang, and Z. P. Liu, Nat. Catal. 2, 671 (2019). doi: 10.1038/s41929-019-0293-8
    S. C. Ma, C. Shang, and Z. P Liu, J. Chem. Phys. 151, 050901 (2019). doi: 10.1063/1.5113673
    A. Predith, G. Ceder, C. Wolverton, K. Persson, and T. Mueller, Phys. Rev. B 77, 144104 (2008). doi: 10.1103/PhysRevB.77.144104
    Y. Dong, L. Qi, J. Li, and I. W. Chen, Acta Mater. 127, 73 (2017). doi: 10.1016/j.actamat.2017.01.006
    Y. Suzuki, Solid State Ionics 81, 211 (1995). doi: 10.1016/0167-2738(95)00186-A
    J. Kondoh, S. Kikuchi, Y. Tomii, and Y. Ito, J. Electrochem. Soc 145, 1550 (1998). doi: 10.1149/1.1838517
    J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings, and K. N. Clausen, Phys. Rev. B 59, 14202 (1999). doi: 10.1103/PhysRevB.59.14202
    N. Sawaguchi and H. Ogawa, Solid State Ionics 128, 183 (2000). doi: 10.1016/S0167-2738(99)00339-2
    T. Arima, K. Fukuyo, K. Idemitsu, and Y. Inagaki, J. Mol. Liquid 113, 67 (2004). doi: 10.1016/j.molliq.2004.02.038
    W. Araki and Y. Arai, Solid State Ionics 181, 441 (2010). doi: 10.1016/j.ssi.2010.01.023
    R. L. González-Romero, J. J. Meléndez, D. Gómez-García, F. L. Cumbrera, and A. Domínguez-Rodríguez, Solid State Ionics 219, 1 (2012). doi: 10.1016/j.ssi.2012.05.004
    R. Krishnamurthy, Y. G. Yoon, D. J. Srolovitz, and R. Car, J. Am. Ceram. Soc. 87, 1821 (2004).
    M. Filal, C. Petot, M. Mokchah, and C. Chateau, Solid State Ionics 80, 27 (1995). doi: 10.1016/0167-2738(95)00137-U
    P. S. Manning, J. D. Sirman, R. A. De Souza, and J. A. Kilner, Solid State Ionics 100, 1 (1997). doi: 10.1016/S0167-2738(97)00345-7
    M. Kilo, C. Argirusis, G. Borchardt, and R. A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003). doi: 10.1039/B300151M
    M. Weller, Solid State Ionics 175, 409 (2004). doi: 10.1016/j.ssi.2003.12.044
    M. Asadikiya and Y. Zhong, J. Mat. Sci. 53, 1699 (2017). doi: 10.1007/s10853-017-1625-1
    F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, and H. Okazaki, J. Phys. Soc. Jpn. 61, 2848 (1992). doi: 10.1143/JPSJ.61.2848
    A. Szendrei, T. D. Sparks, and A. V. Virkar, J. Electrochem. Soc. 164, F1543 (2017). doi: 10.1149/2.0331714jes
    J. Kondoh, T. Kawashima, S. Kikuchi, Y. Tomii, and Y. Ito, J. Electrochem. Soc. 145, 1536 (1998). doi: 10.1149/1.1838516
    A. Nakamura and J. J. Bruce Wagner, J. Electrochem. Soc 133, 1542 (1986). doi: 10.1149/1.2108965
    S. M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu, Q. Jia, H. Wang, T. W. Noh, S. V. Kalinin, and J. L. MacManus-Driscoll, Nat. Commun. 6, 8588 (2015). doi: 10.1038/ncomms9588
    D. Marrocchelli, L. Sun, and B. Yildiz, J. Am. Chem. Soc. 137, 4735 (2015). doi: 10.1021/ja513176u
    B. Feng, T. Yokoi, A. Kumamoto, M. Yoshiya, Y. Ikuhara, and N. Shibata, Nat. Commun. 7, 11079 (2016). doi: 10.1038/ncomms11079
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (930) PDF downloads(60) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint