Turn off MathJax
Article Contents

Yazhen Li, Jiawei Yang, Lily Makroni, Wenliang Wang, Feng-Yi Liu. Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations[J]. Chinese Journal of Chemical Physics .
Citation: Yazhen Li, Jiawei Yang, Lily Makroni, Wenliang Wang, Feng-Yi Liu. Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations[J]. Chinese Journal of Chemical Physics .

Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations

  • Received Date: 2020-06-09
  • Accepted Date: 2020-08-06
  • Rev Recd Date: 2020-07-23
  • Available Online: 2020-09-02
  • Methyl vinyl ketone oxide (MVCI), an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration. It exists in four configurations (anti_anti, anti_syn, syn_anti and syn_syn) due to two different substituents of saturated methyl and unsaturated vinyl groups. In this study, we have carried out the electronic structure calculation at the multi-configurational CASSCF and multi-state MS-CASPT2 levels, as well as the trajectory surface-hopping (TSH) nonadiabatic dynamics simulation at the CASSCF level to reveal the different fates of syn/anti configurations in photochemical process. Our results show that the dominant channel for the S1-state decay is a ring closure, isomerization to dioxirane, during which, the syn(C-O) configurations with an intramolecular hydrogen bond show slower nonadiabatic photoisomerization. More importantly, it has been found for the first time in photochemistry of Criegee intermediate that the cooperation of two heavy groups (methyl and vinyl) leads to an evident pyramidalization of C3 atom in MVCI, which then results in two structurally-independent minimal-energy crossing points (CIs) towards the syn(C-O) and anti(C-O) sides, respectively. The preference of surface hopping for a certain CI is responsible for the different dynamics of each configuration.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(55) PDF downloads(13) Cited by()

Proportional views
Related

Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations

Abstract: Methyl vinyl ketone oxide (MVCI), an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration. It exists in four configurations (anti_anti, anti_syn, syn_anti and syn_syn) due to two different substituents of saturated methyl and unsaturated vinyl groups. In this study, we have carried out the electronic structure calculation at the multi-configurational CASSCF and multi-state MS-CASPT2 levels, as well as the trajectory surface-hopping (TSH) nonadiabatic dynamics simulation at the CASSCF level to reveal the different fates of syn/anti configurations in photochemical process. Our results show that the dominant channel for the S1-state decay is a ring closure, isomerization to dioxirane, during which, the syn(C-O) configurations with an intramolecular hydrogen bond show slower nonadiabatic photoisomerization. More importantly, it has been found for the first time in photochemistry of Criegee intermediate that the cooperation of two heavy groups (methyl and vinyl) leads to an evident pyramidalization of C3 atom in MVCI, which then results in two structurally-independent minimal-energy crossing points (CIs) towards the syn(C-O) and anti(C-O) sides, respectively. The preference of surface hopping for a certain CI is responsible for the different dynamics of each configuration.

Yazhen Li, Jiawei Yang, Lily Makroni, Wenliang Wang, Feng-Yi Liu. Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations[J]. Chinese Journal of Chemical Physics .
Citation: Yazhen Li, Jiawei Yang, Lily Makroni, Wenliang Wang, Feng-Yi Liu. Photodynamics of Methyl-Vinyl Criegee Intermediate: Different Conical Intersections Govern the Fates of Syn/Anti Configurations[J]. Chinese Journal of Chemical Physics .

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return