Turn off MathJax
Article Contents
Ziwei Chen, Ziyuan Li, Shan Xi Tian. Anionic Clusters Produced in Low-Energy Electron Irradiation of Methanol Liquid[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2304037
Citation: Ziwei Chen, Ziyuan Li, Shan Xi Tian. Anionic Clusters Produced in Low-Energy Electron Irradiation of Methanol Liquid[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2304037

Anionic Clusters Produced in Low-Energy Electron Irradiation of Methanol Liquid

doi: 10.1063/1674-0068/cjcp2304037
More Information
  • Corresponding author: E-mail: sxtian@ustc.edu.cn
  • Received Date: 2023-04-22
  • Accepted Date: 2023-05-19
  • Available Online: 2023-05-20
  • In the low-energy electron impacts with a liquid beam of methanol, we detect the anionic yields using a linear time-of-flight mass spectrometer. With help of quantum chemistry calculations, we further identify these anionic products as the hydrogen-bonding clusters, i.e., CH3OH·CH3O and CH3OH·CH3OH·CH3O, and their singly occupied molecular orbitals show the valence-bound feature. In contrast, CH3OH·CH3OH and CH3OH·CH3OH·CH3OH are unfavored in energetics with respect to the dehydrogenated ones, although they also correspond to the minima on the potential energy surfaces. Furthermore, the singly occupied molecular orbitals of CH3OH·CH3OH and CH3OH·CH3OH·CH3OH indicate the typical feature of aqueous-solvated electron.

     

  • loading
  • [1]
    G. C. Almeida, D. P. Andrade, C. Arantes, A. M. Nazareth, H. M. Boechat-Roberty, and M. L. M. Rocco, J. Phys. Chem. C 116, 25388 (2012). doi: 10.1021/jp308680k
    [2]
    B. Bandyopadhyay, O. Kostko, Y. Fang, and M. Ahmed, J. Phys. Chem. A 119, 4083 (2015). doi: 10.1021/acs.jpca.5b00912
    [3]
    A. Vrhovsek, O. Gereben, A. Jamnik, and L. Pusztai, J. Phys. Chem. B 115, 13473 (2011). doi: 10.1021/jp206665w
    [4]
    F. N. Keutsch and R. J. Saykally, Proc. Natl. Acad. Sci. USA 98, 10533 (2001). doi: 10.1073/pnas.191266498
    [5]
    M. Yang and J. Skinner, Phys. Chem. Chem. Phys. 12, 982 (2010). doi: 10.1039/B918314K
    [6]
    M. Faubel and T. Kisters, Nature 339, 527 (1989). doi: 10.1038/339527a0
    [7]
    L. Chen, Z. Chen, Z. Li, J. Hu, and S. X. Tian, Rev. Sci. Instrum. 89, 103102 (2018). doi: 10.1063/1.5022394
    [8]
    Z. Chen, C. F. Fu, Z. Li, J. Hu, H. Li, J. Yang, and S. X. Tian, J. Phys. Chem. Lett. 11, 7510 (2020). doi: 10.1021/acs.jpclett.0c02097
    [9]
    Z. Li, Z. Chen, J. Hu, H. Li, and S. X. Tian, Chin. J. Chem. Phys. 34, 43 (2021). doi: 10.1063/1674-0068/cjcp2101002
    [10]
    Z. Chen, Z. Li, J. Hu, and S. X. Tian, Acc. Chem. Res. 55, 3071 (2022). doi: 10.1021/acs.accounts.2c00428
    [11]
    C. R. Arumainayagam, H. L. Lee, R. B. Nelson, D. R. Haines, and R. P. Gunawardane, Surf. Sci. Rep. 65, 1 (2010). doi: 10.1016/j.surfrep.2009.09.001
    [12]
    E. Alizadeh and L. Sanche, Radiat. Phys. Chem. 81, 33 (2012). doi: 10.1016/j.radphyschem.2011.09.004
    [13]
    B. C. Ibănescu, O. May, A. Monney, and M. Allan, Phys. Chem. Chem. Phys. 9, 3163 (2007). doi: 10.1039/B704656A
    [14]
    M. C. Boyer, M. D. Boamah, K. K. Sullivan, C. R. Arumainayagam, M. Bazin, A. D. Bass, and L. Sanche, J. Phys. Chem. C 118, 22592 (2014). doi: 10.1021/jp506365d
    [15]
    T. H. Bertram, R. E. Cochran, V. H. Grassian, and E. A. Stone, Chem. Soc. Rev. 47, 2374 (2018). doi: 10.1039/C7CS00008A
    [16]
    Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). doi: 10.1007/s00214-007-0310-x
    [17]
    J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987). doi: 10.1063/1.453520
    [18]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C. 01, Wallingford, CT: Gaussian Inc., (2016).
    [19]
    A. Kühn, H. P. Fenzlaff, and E. Illenberger, J. Chem. Phys. 88, 7453 (1988). doi: 10.1063/1.454309
    [20]
    A. Kammrath, J. R. Verlet, G. B. Griffin, and D. M. Neumark, J. Chem. Phys. 125, 171102 (2006). doi: 10.1063/1.2355484
    [21]
    A. Kammrath, G. B. Griffin, J. R. Verlet, R. M. Young, and D. M. Neumark, J. Chem. Phys. 126, 244306 (2007). doi: 10.1063/1.2747618
    [22]
    G. Pohl, L. Mones and L. Turi, J. Chem. Phys. 145, 164313 (2016). doi: 10.1063/1.4964845
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (78) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return