Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Junfang Yang, Qian Peng. Effects of Intermolecular Interactions on Luminescence Property in Organic Molecules[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 38-51. doi: 10.1063/1674-0068/cjcp2112281
Citation: Junfang Yang, Qian Peng. Effects of Intermolecular Interactions on Luminescence Property in Organic Molecules[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 38-51. doi: 10.1063/1674-0068/cjcp2112281

Effects of Intermolecular Interactions on Luminescence Property in Organic Molecules

doi: 10.1063/1674-0068/cjcp2112281
More Information
  • Corresponding author: Qian Peng, E-mail: qianpeng@ucas.ac.cn
  • Received Date: 2021-12-10
  • Accepted Date: 2022-02-03
  • Publish Date: 2022-02-27
  • The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays, lasers and optical communications. In contrast to isolated molecule, there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways, resulting in strong fluorescence/phosphorescence. It is increasingly necessary to reveal the luminescence mechanism of organic solids. Here, we briefly review how intermolecular interactions induce strong normal fluorescence, thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry, electronic structures, electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules. We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    K. Huang, A. Rhys, and N. F. Mott, Proc. R Soc. Lond. A Math. Phys. Sci. 204, 406 (1950).
    [2]
    G. W. Robinson and R. P. Frosch, J. Chem. Phys. 38, 1187 (1963). doi: 10.1063/1.1733823
    [3]
    S. H. Lin, J. Chem. Phys. 44, 3759 (1966). doi: 10.1063/1.1726531
    [4]
    R. Englman and J. Jortner, Mol. Phys. 18, 145 (1970). doi: 10.1080/00268977000100171
    [5]
    A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes, Chem. Rev. 109, 897 (2009).
    [6]
    S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994). doi: 10.1126/science.265.5173.765
    [7]
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987). doi: 10.1063/1.98799
    [8]
    J. Kido, M. Kimura, and K. Nagai, Science 267, 332 (1995). doi: 10.1126/science.267.5196.332
    [9]
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009). doi: 10.1038/nature08003
    [10]
    A. C. B. Rodrigues and J. S. S. de Melo, Top. Curr. Chem. 379, 38 (2021). doi: 10.1007/s41061-021-00350-w
    [11]
    Y. Jiang, Y. Y. Liu, X. Liu, H. Lin, K. Gao, W. Y. Lai, and W. Huang, Chem. Soc. Rev. 49, 5885 (2020). doi: 10.1039/D0CS00037J
    [12]
    J. D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, and B. Z. Tang, Chem. Commun. 1740 (2001).
    [13]
    C. R. Wang, Y. Y. Gong, W. Z. Yuan, and Y. M. Zhang, Chin. Chem. Lett. 27, 184 (2016).
    [14]
    J. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, and J. Qiao, Adv. Mater. 31, 1808242 (2019). doi: 10.1002/adma.201808242
    [15]
    S. Shao and L. Wang, Aggregate 1, 45 (2020). doi: 10.1002/agt2.4
    [16]
    C. Li, X. Tang, L. Zhang, C. Li, Z. Liu, Z. Bo, Y.Q. Dong, Y. H. Tian, Y. Dong, and B. Z. Tang, Adv. Opt. Mater. 3, 1184 (2015). doi: 10.1002/adom.201500115
    [17]
    Q. Peng, H. Ma, and Z. Shuai, Acc. Chem. Res. 54, 940 (2021). doi: 10.1021/acs.accounts.0c00556
    [18]
    Q. Peng and Z. Shuai, Aggregate 2, 1 (2021). doi: 10.1002/agt2.40
    [19]
    T. Wyttenbach and M. T. Bowers, Annu. Rev. Phys. Chem. 58, 511 (2007). doi: 10.1146/annurev.physchem.58.032806.104515
    [20]
    Y. Fukunishi, Intermolecular Interaction in Biological Systems, Omics: Biomedical Perspectives and Applications (2012).
    [21]
    N. J. Singh, S. K. Min, D. Y. Kim, and K. S. Kim, J. Chem. Theory Comput. 5, 515 (2009). doi: 10.1021/ct800471b
    [22]
    S. Emamian, T. Lu, H. Kruse, and H. Emamian, J. Comput. Chem. 40, 2868 (2019). doi: 10.1002/jcc.26068
    [23]
    Q. Wu, Q. Peng, Y. Niu, X. Gao, and Z. Shuai, J. Phys. Chem. A 116, 3881 (2012). doi: 10.1021/jp3002367
    [24]
    H. Ma, W. Shi, J. Ren, W. Li, Q. Peng, and Z. Shuai, J. Phys. Chem. Lett. 7, 2893 (2016). doi: 10.1021/acs.jpclett.6b01156
    [25]
    S. Yang, P.A. Yin, L. Li, Q. Peng, X. Gu, G. Gao, J. You, and B. Z. Tang, Angew. Chem. Int. Ed. 59, 10136 (2020). doi: 10.1002/anie.201914437
    [26]
    J. Yang, Q. Peng, R. Xue, Z. Li, and X. Zheng, Mater. Chem. Front. 5, 1806 (2021). doi: 10.1039/D0QM00942C
    [27]
    C. Lefebvre, G. Rubez, H. Khartabil, J. C. Boisson, J. Contreras-García, and E. Hénon, Phys. Chem. Chem. Phys. 19, 17928 (2017).
    [28]
    C. Lefebvre, H. Khartabil, J. C. Boisson, J. ContrerasGarca, J. P. Piquemal, and E. Hénon, Chem. Phys. Chem. 19, 724 (2018). doi: 10.1002/cphc.201701325
    [29]
    B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887 (1994). doi: 10.1021/cr00031a008
    [30]
    A. Stone, The Theory of Intermolecular Forces, Oxford University Press, (2013).
    [31]
    J. Kong, C. A. White, A. I. Krylov, D. Sherrill, R. D. Adamson, T.R. Furlani, M.S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, C. Ochsenfeld, A. T. B. Gilbert, G. S. Kedziora, V. A. Rassolov, D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. E. Maslen, J. P. Dombroski, H. Daschel, W. Zhang, P. P. Korambath, J. Baker, E. F. C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata, C. P. Hsu, N. Ishikawa, J. Florian, A. Warshel, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, and J. A. Pople, J. Comput. Chem. 21, 1532 (2000). doi: 10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-W
    [32]
    J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004). doi: 10.1002/jcc.20035
    [33]
    A. K. Rappé, C. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, and UFF, J. Am. Chem. Soc. 114, 10024 (1992). doi: 10.1021/ja00051a040
    [34]
    M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian16 Revision A. 03, Wallingford CT: Gaussian Inc., (2016).
    [35]
    S. Metz, J. Kästner, A. A. Sokol, T. W. Keal, and P. Sherwood, WIREs Comput. Mol. Sci. 4, 101 (2014). doi: 10.1002/wcms.1163
    [36]
    X. Zheng, Q. Peng, L. Zhu, Y. Xie, X. Huang, and Z. Shuai, Nanoscale 8, 15173 (2016). doi: 10.1039/C6NR03599J
    [37]
    Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang, and Z. Shuai, Mol. Phys. 116, 1078 (2018). doi: 10.1080/00268976.2017.1402966
    [38]
    Y. Niu, Q. Peng, C. Deng, X. Gao, and Z. Shuai, J. Phys. Chem. A 114, 7817 (2010).
    [39]
    Q. Peng, Y. Niu, Q. Shi, X. Gao, and Z. Shuai, J. Chem. Theory Comput. 9, 1132 (2013). doi: 10.1021/ct300798t
    [40]
    (a) Z. Shuai, Chin. J. Chem. 38, 1223 (2020);
    (b) W. Li, J. Ren, Z. Shuai, Chem. J. Chin. Univ. 42, 2085 (2021);
    (c) Q. Peng, Y. Yi, Z. Shuai, and J. Shao, J. Am. Chem. Soc. 129, 9333 (2007).
    [41]
    A. M. Mebel, M. Hayashi, K. K. Liang, and S. H. Lin, J. Phys. Chem. A 103, 10674 (1999). doi: 10.1021/jp992429m
    [42]
    Y. Niu, Q. Peng, and Z. Shuai, Sci. China Ser. B 51, 1153 (2008). doi: 10.1007/s11426-008-0130-4
    [43]
    B. Li, W. Li, Y. Xu, J. Li, J. Tu, and S. Sun, Chem. Comm. 51, 14652 (2015). doi: 10.1039/C5CC06086A
    [44]
    T. Zhang, H. Ma, Y. Niu, W. Li, D. Wang, Q. Peng, Z. Shuai, and W. Liang, J. Phys. Chem. C 119, 5040 (2015). doi: 10.1021/acs.jpcc.5b01323
    [45]
    Q. Peng, D. Fan, R. Duan, Y. Yi, Y. Niu, D. Wang, and Z. Shuai, J. Phys. Chem. C 121, 13448 (2017). doi: 10.1021/acs.jpcc.7b00692
    [46]
    L. Wang, Q. Ou, Q. Peng, and Z. Shuai, J. Phys. Chem. A 125, 1468 (2021).
    [47]
    H. Zhang, G. Li, X. Guo, K. Zhang, B. Zhang, X. Guo, Y. Li, J. Fan, Z. Wang, D. Ma, and B. Z. Tang, Angew. Chem. Int. Ed. 60, 1 (2021). doi: 10.1002/anie.202015604
    [48]
    M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, Phys. Rev. B 68, 075211 (2003). doi: 10.1103/PhysRevB.68.075211
    [49]
    A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater. 21, 4802 (2009). doi: 10.1002/adma.200900983
    [50]
    D.Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys. 106, 124510 (2009). doi: 10.1063/1.3273407
    [51]
    M. Y. Wong and E. Zysman-Colman, Adv. Mater. 29, 1605444 (2017). doi: 10.1002/adma.201605444
    [52]
    F. Tenopala-Carmona, O. S. Lee, E. Crovini, A. M. Neferu, C. Murawski, Y. Olivier, E. Zysman-Colman, and M. C. Gather, Adv. Mater. 33, 2100677 (2021). doi: 10.1002/adma.202100677
    [53]
    J. Lee, K. Shizu, H. Tanaka, H. Nakanotani, T. Yasuda, H. Kaji, and C. Adachi, J. Mater. Chemi. C 3, 2175 (2015). doi: 10.1039/C4TC02530J
    [54]
    M. H. Cai, M. Auffray, D. D. Zhang, Y. W. Zhang, R. Nagata, Z. S. Lin, X. Tang, C. Y. Chan, Y. T. Lee, T. Y. Huang, X. Z. Song, Y. Tsuchiya, C. Adachi, and L. Duan, Chem. Eng. J. 420, 127591 (2021). doi: 10.1016/j.cej.2020.127591
    [55]
    G. Qian and Z. Y. Wang, Chem. Asian J. 5, 1006 (2010). doi: 10.1002/asia.200900596
    [56]
    S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, and B. Liu, Angew. Chem. Int. Ed. 56, 12160 (2017). doi: 10.1002/anie.201705945
    [57]
    A. Nicol, R. T. K. Kwok, C. Chen, W. Zhao, M. Chen, J. Qu, and B. Z. Tang, J. Am. Chem. Soc. 139, 14792 (2017). doi: 10.1021/jacs.7b08710
    [58]
    J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. H. P. Sung, G. Shan, J. W. Y. Lam, Z. Shuai, and B. Z. Tang, Nat. Comm. 9, 2963 (2018). doi: 10.1038/s41467-018-05298-y
    [59]
    Z. He, H. Gao, S. Zhang, S. Zheng, Y. Wang, Z. Zhao, D. Ding, B. Yang, Y. Zhang, and W. Z. Yuan, Adv. Mater. 31, 1807222 (2019). doi: 10.1002/adma.201807222
    [60]
    Kenry, C. Chen, and B. Liu, Nat. Comm. 10, 2111 (2019). doi: 10.1038/s41467-019-10033-2
    [61]
    H. Chen, Y. Deng, X. Zhu, L. Wang, L. Lv, X. Wu, Z. Li, Q. Shi, A. Peng, Q. Peng, Z. Shuai, Z. Zhao, H. Chen, and H. Huang, Chem. Mater. 32, 4038 (2020). doi: 10.1021/acs.chemmater.0c00710
    [62]
    N. J. Turro, V. Ramamurthy, and J. C Scaiano, Modern Molecular Photochemistry of Organic Molecules, Sausalito: Viva Books, University Science Books, (2017).
    [63]
    X. Liu, Y. Pan, Y. Lei, N. Liu, W. Dai, M. Liu, Z. Cai, H. Wu, X. Huang, and Y. Dong, J. Phys. Chem. Lett. 12, 7357 (2021). doi: 10.1021/acs.jpclett.1c01893
    [64]
    E. Lucenti, A. Forni, C. Botta, L. Carlucci, C. Giannini, D. Marinotto, A. Previtali, S. Righetto, and E. Cariati, J. Phys. Chem. Lett. 8, 1894 (2017). doi: 10.1021/acs.jpclett.7b00503
    [65]
    J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, and Z. Li, Nat. Comm. 9, 840 (2018). doi: 10.1038/s41467-018-03236-6
    [66]
    S. Cai, H. Shi, D. Tian, H. Ma, Z. Cheng, Q. Wu, M. Gu, L. Huang, Z. An, Q. Peng, and W. Huang, Adv. Funct. Mater. 28, 1705045 (2018). doi: 10.1002/adfm.201705045
    [67]
    H. Ma, H. Yu, Q. Peng, Z. An, D. Wang, and Z. Shuai, J. Phys. Chem. Lett. 10, 6948 (2019). doi: 10.1021/acs.jpclett.9b02568
    [68]
    Z. Shuai, Chin. J. Chem. 38, 1223 (2020). doi: 10.1002/cjoc.202000226
    [69]
    W. T. Li, J. J. Ren, and Z. G. Shuai, Chem. J Chin. U. 42, 2085 (2021).
    [70]
    Z. Xie, X. Zhang, H. Wang, C. Huang, H. Sun, M. Dong, L. Ji, Z. An, T. Yu, and W. Huang, Nat. Commun. 12, 3522 (2021).
    [71]
    M. Du, Y. Shi, Q. Zhou, Z. Yin, L. Chen, Y. Shu, G. Y. Sun, G. Zhang, Q. Peng, and D. Zhang, Adv. Sci. 9, 2104539 (2021).
    [72]
    Y. Ren, W. Dai, S. Guo, L. Dong, S. Huang, J. Shi, B. Tong, N. Hao, L. Li, Z. Cai, and Y. Dong, J. Am. Chem. Soc. (2021). DOI: 10.1021/jacs.1c11607.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (373) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return