Photodissociation of 2-Bromobutane at ~265 nm by Ion-velocity Map Imaging Technique
-
Graphical Abstract
-
Abstract
The photodissociation dynamics of 2-bromobutane has been investigated at 264.77 and 264.86 nm by ion-velocity map imaging technique coupled with resonance-enhanced multi-photon ionization. The speed and angular distributions have been derived from the velocity map images of Br and Br*. The speed distributions of Br and Br* atoms in the photodis-sociation of 2-bromobutane at ~265 nm can be fitted using only one Gaussian function indicating that bromine fragments were produced via direct dissociation of C-Br bond. Thecontributions of the excited 3Q0, 3Q1, and 1Q1 states to the products (Br and Br*) were discussed. It is found that the nonadiabatic 1Q1←3Q0 transition plays an important role for Br photofragment in the dissociation of 2-C4H9Br at ~265 nm. Relative quantum yield of 0.621 for Br(2P3/2) at ~265 nm in the photodissociation of 2-bromobutane is derived. By comparing the photodissociation of 2-C4H9Br at ~265 nm and that that at ~234 nm, the anisotropy parameter β(Br) and β(Br*), and relative quantum yield ?(Br) decrease with increasing wavelength, the probability of curve crossing between 3Q0 and 1Q1 decreases with increasing laser wavelength.
-
-