Advanced Search
    Kun-jie Li, Shi-ping Huang, Wei-xia Tu, Ji-qin Zhu, Hui Liu. Melting Behaviour of Shell-symmetric Aluminum Nanoparticles: Molecular Dynamics Simulation[J]. Chinese Journal of Chemical Physics , 2009, 22(3): 215-222. DOI: 10.1088/1674-0068/22/03/215-222
    Citation: Kun-jie Li, Shi-ping Huang, Wei-xia Tu, Ji-qin Zhu, Hui Liu. Melting Behaviour of Shell-symmetric Aluminum Nanoparticles: Molecular Dynamics Simulation[J]. Chinese Journal of Chemical Physics , 2009, 22(3): 215-222. DOI: 10.1088/1674-0068/22/03/215-222

    Melting Behaviour of Shell-symmetric Aluminum Nanoparticles: Molecular Dynamics Simulation

    • Molecular dynamics simulations with embedded atom method potential were carried out for Al nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specfic heat capacity were calculated to estimate the melting temperatures. The melting point is 540±10 K for the icosahedral structure,500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure.With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return