Citation: | Qian Gao, Junjie Chen, Xixi Hu, Daiqian Xie. Theoretical Study on Photodissociation Dynamics of Vibrational Excited States of H2S in the First Absorption Band†[J]. Chinese Journal of Chemical Physics , 2024, 37(2): 221-229. DOI: 10.1063/1674-0068/cjcp2312141 |
The photodissociation quantum dynamics for the first absorption band of H2S in different initial vibrational states have been investigated using Chebyshev real wave packet method. Because of the difference of the wave functions for the initial vibrational states, the calculated absorption spectra and the distributions of vibrational and rotational state of the products display different dynamic characteristics. The width and peak position of the absorption spectra for initial stretching excited states (1,0,0) and (0,0,1) are different from that of the vibrational ground state, while the (0,1,0) vibrational state has two almost equally high peaks in its absorption spectrum because of the change of wave function in angular coordinate. The product vibrational state distribution for (0,1,0) initial state weakly depends on the excitation energy and is dominated by the products of v=0, but SH(v=1) fragment is dominant at lower energy for (1,0,0) and (0,0,1) vibrational states. The rotational state distributions of products are very cold with the peak at j=1 for these four states and weakly depend on the total energy. Besides, the rotational state distribution from (0,1,0) vibrational state displays strong oscillation, and its anisotropic parameter with rotational quantum numbers is also different from that of the other three vibrational states.
This work was supported by the Innovation Program for Quantum Science and Technology (2021ZD0303305 to Daiqian Xie), by the National Natural Science Foundation of China (No.22073042 and No.22122302 to Xixi Hu, No.22233003 and No.22241302 to Daiqian Xie). All calculations have been performed on the computing facilities in the High Performance Computing Center (HPCC) of Nanjing University.
Part of Special Issue ``In Memory of Prof. Qihe Zhu on the occasion of his 100th Aniversary".
[1] |
G. N. A. van Veen, K. A. Mohamed, T. Baller, and A. E. de Vries, Chem. Phys. 74, 261 (1983). doi: 10.1016/0301-0104(83)80029-9
|
[2] |
W. G. Hawkins, J. Chem. Phys. 76, 729 (1982). doi: 10.1063/1.442677
|
[3] |
B. R. Weiner, H. B. Levene, J. J. Valentini, and A. P. Baronavski, J. Chem. Phys. 90, 1403 (1989). doi: 10.1063/1.456082
|
[4] |
X. X. Xie, L. Schnieder, H. Wallmeier, R. Boettner, K. H. Welge, and M. N. R. Ashfold, J. Chem. Phys. 92, 1608 (1990). doi: 10.1063/1.458093
|
[5] |
R. E. Continetti, B. A. Balko, and Y. T. Lee, Chem. Phys. Lett. 182, 400 (1991). doi: 10.1016/0009-2614(91)90097-S
|
[6] |
W. G. Hawkins and P. L. Houston, J. Chem. Phys. 73, 297 (1980). doi: 10.1063/1.439873
|
[7] |
Z. W. Luan, Y. L. Fu, Y. X. Tan, Y. L. Wang, A. W. Liu, T. Wang, X. G. Zhou, B. N. Fu, D. H. Zhang, D. F. Yuan, X. A. Wang, and X. M. Yang, Chin. J. Chem. Phys. 36, 289 (2023). doi: 10.1063/1674-0068/cjcp2304041
|
[8] |
Y. R. Zhao, J. J. Chen, Z. J. Luo, Z. X. Li, S. K. Yang, Y. Chang, F. An, Z. C. Chen, J. Y. Yang, G. R. Wu, W. Q. Zhang, X. X. Hu, D. Q. Xie, H. B. Ding, K. J. Yuan, and X. M. Yang, J. Phys. Chem. Lett. 13, 9786 (2022). doi: 10.1021/acs.jpclett.2c02757
|
[9] |
Y. R. Zhao, J. J. Chen, Z. J. Luo, Y. Chang, J. Y. Yang, W. Q. Zhang, G. R. Wu, S. W. Crane, C. S. Hansen, H. B. Ding, F. An, X. X. Hu, D. Q. Xie, M. N. R. Ashfold, K. J. Yuan, and X. M. Yang, Chem. Sci. 14, 2501 (2023). doi: 10.1039/D2SC06988A
|
[10] |
K. C. Kulander, Chem. Phys. Lett. 103, 373 (1984). doi: 10.1016/0009-2614(84)80323-1
|
[11] |
K. Kleinermanns, E. Linnebach, and R. Suntz, J. Phys. Chem. 91, 5543 (1987). doi: 10.1021/j100306a009
|
[12] |
S. H. S. Wilson, J. D. Howe, and M. N. R. Ashfold, Mol. Phys. 88, 841 (1996). doi: 10.1080/00268979609482458
|
[13] |
D. Häusler, P. Andresen, and R. Schinke, J. Chem. Phys. 87, 3949 (1987). doi: 10.1063/1.452949
|
[14] |
V. Engel, V. Staemmler, R. L. Vander Wal, F. F. Crim, R. J. Sension, B. Hudson, P. Andresen, S. Hennig, K. Weide, and R. Schinke, J. Phys. Chem. 96, 3201 (1992). doi: 10.1021/j100187a007
|
[15] |
Y. H. Wu and V. S. Batista, J. Phys. Chem. B. 106, 8271 (2002). doi: 10.1021/jp0207735
|
[16] |
L. S. Zhou, D. Q. Xie, Z. G. Sun, and H. Guo, J. Chem. Phys. 140, 024310 (2014). doi: 10.1063/1.4861230
|
[17] |
K. J. Yuan, R. N. Dixon, and X. M. Yang, Acc. Chem. Res. 44, 369 (2011). doi: 10.1021/ar100153g
|
[18] |
B. Heumann and R. Schinke, J. Chem. Phys. 101, 7488 (1994). doi: 10.1063/1.468416
|
[19] |
D. Simah, B. Hartke, and H. J. Werner, J. Chem. Phys. 111, 4523 (1999). doi: 10.1063/1.479214
|
[20] |
Z. Xu, B. Koplitz, and C. Wittig, J. Chem. Phys. 87, 1062 (1987). doi: 10.1063/1.453339
|
[21] |
V. Engel and R. Schinke, J. Chem. Phys. 88, 6831 (1988). doi: 10.1063/1.454381
|
[22] |
V. Engel, R. Schinke, and V. Staemmler, J. Chem. Phys. 88, 129 (1988). doi: 10.1063/1.454645
|
[23] |
K. Weide, S. Hennig, and R. Schinke, J. Chem. Phys. 91, 7630 (1989). doi: 10.1063/1.457233
|
[24] |
M. Brouard, S. R. Langford, and D. E. Manolopoulos, J. Chem. Phys. 101, 7458 (1994). doi: 10.1063/1.468268
|
[25] |
P. Andresen, G. S. Ondrey, B. Titze, and E. W. Rothe, J. Chem. Phys. 80, 2548 (1984). doi: 10.1063/1.447049
|
[26] |
M. Brouard and S. R. Langford, J. Chem. Phys. 106, 6354 (1997). doi: 10.1063/1.473625
|
[27] |
M. D. Likar, A. Sinha, T. M. Ticich, R. L. Vander Wal, and F. F. Crim, Ber. Bunsen-Ges. Phys. Chem. 92, 289 (1988). doi: 10.1002/bbpc.198800064
|
[28] |
G. S. M. Lin, L. S. Zhou, and D. Q. Xie, J. Phys. Chem. A 118, 9220 (2014). doi: 10.1021/jp503062s
|
[29] |
L. S. Zhou and D. Q. Xie, J. Phys. Chem. A 119, 12062 (2015). doi: 10.1021/acs.jpca.5b05029
|
[30] |
S. Y. Han, L. S. Zhou, and D. Q. Xie, Chin. J. Chem. Phys. 28, 396 (2015). doi: 10.1063/1674-0068/28/cjcp1506138
|
[31] |
S. A. Harich, X. F. Yang, D. W. H. Hwang, J. J. Lin, X. M. Yang, and R. N. Dixon, J. Chem. Phys. 114, 7830 (2001). doi: 10.1063/1.1364683
|
[32] |
F. An, S. Y. Han, X. X. Hu, K. J. Yuan, and D. Q. Xie, Chin. J. Chem. Phys. 35, 104 (2022). doi: 10.1063/1674-0068/cjcp2111241
|
[33] |
J. Y. Ma, C. J. Xie, X. L. Zhu, D. R. Yarkony, D. Q. Xie, and H. Guo, J. Phys. Chem. A 118, 11926 (2014). doi: 10.1021/jp5057122
|
[34] |
A. Bach, J. M. Hutchison, R. J. Holiday, and F. F. Crim, J. Chem. Phys. 118, 7144 (2003). doi: 10.1063/1.1561619
|
[35] |
H. Akagi, K. Yokoyama, and A. Yokoyama, J. Chem. Phys. 118, 3600 (2003). doi: 10.1063/1.1538238
|
[36] |
D. W. Hwang, X. F. Yang, S. Harich, J. J. Lin, and X. Yang, J. Chem. Phys. 110, 4123 (1999). doi: 10.1063/1.478294
|
[37] |
L. S. Zhou, B. Jiang, D. Q. Xie, and H. Guo, J. Phys. Chem. A 117, 6940 (2013). doi: 10.1021/jp310546g
|
[38] |
J. J. Chen, H. Z. Zhang, L. S. Zhou, X. X. Hu, and D. Q. Xie, Phys. Chem. Chem. Phys. 25, 26032 (2023). doi: 10.1039/D3CP03026A
|
[39] |
G. G. Balint-Kurti and M. Shapiro, Chem. Phys. 61, 137 (1981). doi: 10.1016/0301-0104(81)85056-2
|
[40] |
J. Cullum and R. A. Willoughby, J. Comput. Phys. 44, 329 (1981). doi: 10.1016/0021-9991(81)90056-5
|
[41] |
H. Guo, Recursive Solutions to Large Eigenproblems in Molecular Spectroscopy and Reaction, Dynamics, K. B. Lipkowitz and T. R. Cundari, Eds., New Jersey: Wiley, Vol. 25, 285 (2007).
|
[42] |
R. Q. Chen and H. Guo, Comput. Phys. Commun. 119, 19 (1999). doi: 10.1016/S0010-4655(98)00179-9
|
[43] |
V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 103, 2903 (1995). doi: 10.1063/1.470477
|
[44] |
H. Guo, J. Chem. Phys. 108, 2466 (1998). doi: 10.1063/1.475629
|
[45] |
R. Schinke, Encyclopedia of Computational Chemistry, P. von Rague Schleyer Ed., Chichester: Wiley, (1998).
|
[46] |
B. Jiang, D. Q. Xie, and H. Guo, J. Chem. Phys. 136, 034302 (2012). doi: 10.1063/1.3676725
|
[47] |
T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 993 (1977). doi: 10.1063/1.555560
|
[48] |
R. Schinke, Photodissociation Dynamics, Cambridge: Cambridge University Press, (1993).
|
[1] | Liang Huang, Chang Yao. Working Condition Real-Time Monitoring Model of Lithium Ion Batteries Based on Distributed Parameter System and Single Particle Model[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 623-628. DOI: 10.1063/1674-0068/29/cjcp1604063 |
[2] | Kun Wang, Gui-wu Lu, Guang-gang Zhou, Hong-wang Yang, Dong-dong Su. Molecular Dynamics Study on Microstructure of Potassium Dihydrogen Phosphates Solution[J]. Chinese Journal of Chemical Physics , 2010, 23(2): 160-164. DOI: 10.1088/1674-0068/23/02/160-164 |
[3] | Yun-xin Zhang. Limit Properties of One Dimensional Periodic Hopping Model[J]. Chinese Journal of Chemical Physics , 2010, 23(1): 65-68. DOI: 10.1088/1674-0068/23/01/65-68 |
[4] | Tian-yi Zhang, Neng-wu Zheng. Theoretical Calculations of Transition Probabilities and Oscillator Strengths for Sc(III) and Y(III)[J]. Chinese Journal of Chemical Physics , 2009, 22(3): 246-254. DOI: 10.1088/1674-0068/22/03/246-254 |
[5] | Dang Hui, Zhu Yingshun, Gong Xinglong, Zhang Peiqiang. Revised Model of the Magnetorhelogical Elastomer Based on Distributed Chains[J]. Chinese Journal of Chemical Physics , 2005, 18(6): 971-975. DOI: 10.1088/1674-0068/18/6/971-975 |
[6] | Yu Ping, Song Yuanfeng, Yuan Qinghua, Wang Leilei, Li Jianming, Qiu Nanyuan. Surface Reaction Rate Equation and Molecule Reaction Probability of SnO2/CeO2[J]. Chinese Journal of Chemical Physics , 2005, 18(4): 573-576. DOI: 10.1088/1674-0068/18/4/573-576 |
[7] | Chu Jiurong, Zhong Lisheng, Xu Chuanxiang. Correction of Refractive-Index Distribution Model in Graded-Index Polymer Optical Fiber Rod[J]. Chinese Journal of Chemical Physics , 2005, 18(2): 183-186. DOI: 10.1088/1674-0068/18/2/183-186 |
[8] | Yao Li, Han Keli, Song Heshan, Zhang J. Z. H.. The Semirigid Vibrating Rotor Target Model for Atom-polyatom Reaction:Application to F+CH2D2 →CH2D/CHD2+DF/HF[J]. Chinese Journal of Chemical Physics , 2004, 17(3): 339-345. DOI: 10.1088/1674-0068/17/3/339-345 |
[9] | Gao Yide, Jin Jin, Liu Yunzhen, Zhang Limin, Chen Yang, Chen Congxiang. The Measurements of Quenching Rate Constants of CCI2 (A1B1and a3B1) by Ketones[J]. Chinese Journal of Chemical Physics , 2001, 14(3): 257-262. DOI: 10.1088/1674-0068/14/3/257-262 |
[10] | Yin Min, Krupa J. C.. Upconversion Luminescence in Nd3+: LaCl3[J]. Chinese Journal of Chemical Physics , 2001, 14(1): 40-46. DOI: 10.1088/1674-0068/14/1/40-46 |