Turn off MathJax
Article Contents
Xinfei Li, Xiaodong Chen, Ning Chen, Liming Liu, Xiaoguo Zhou, Shilin Liu. Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303023
Citation: Xinfei Li, Xiaodong Chen, Ning Chen, Liming Liu, Xiaoguo Zhou, Shilin Liu. Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303023

Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study

doi: 10.1063/1674-0068/cjcp2303023
More Information
  • Nickel, an important transition metal element, is one of the trace elements for human body and has a crucial impact on life and health. Some evidences show the excess exposure to metal ions might be associated with neurological diseases. Herein, we applied Raman spectroscopy to study the Ni(II) ion effect on kinetics of amyloid fibrillation of hen egg white lysozyme (HEWL) in thermal and acidic conditions. Using the well-known Raman indicators for protein tertiary and secondary structures, we monitored and analyzed the concentration effect of Ni(II) ions on the unfolding of tertiary structures and the transformation of secondary structures. The experimental evidence validates the accelerator role of the metal ion in the kinetics. Notably, the additional analysis of the amide I band profile, combined with thioflavin-T fluorescence assays, clearly indicates the inhibitory effect of Ni(II) ions on the formation of amyloid fibrils with organized β-sheets structures. Instead, a more significant promotion influence is affirmed on the assembly into other aggregates with disordered structures. The present results provide rich information about the specific metal-mediated protein fibrillation.

     

  • loading
  • [1]
    F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 86, 27 (2017). doi: 10.1146/annurev-biochem-061516-045115
    [2]
    R. N. Rambaran and L. C. Serpell, Prion 2, 112 (2008). doi: 10.4161/pri.2.3.7488
    [3]
    K. A. Conway, J. D. Harper, and P. T. Lansbury, Biochemistry 39, 2552 (2000). doi: 10.1021/bi991447r
    [4]
    C. M. Dobson, Nature 426, 884 (2003). doi: 10.1038/nature02261
    [5]
    C. Redfield and C. M. Dobson, Biochemistry 29, 7201 (1990). doi: 10.1021/bi00483a007
    [6]
    R. Swaminathan, V. K. Ravi, S. Kumar, M. V. S. Kumar, and N. Chandra, Adv. Protein Chem. Struct. Biol. 84, 63 (2011). doi: 10.1016/B978-0-12-386483-3.00003-3
    [7]
    H. Wang, J. Wu, R. Sternke-Hoffmann, W. Zheng, C. Morman, and J. Luo, Commun. Chem. 5, 171 (2022). doi: 10.1038/s42004-022-00786-1
    [8]
    S. Y. Ow and D. E. Dunstan, Soft Matter 9, 9692 (2013). doi: 10.1039/c3sm51671g
    [9]
    N. A. Jamuna, A. Kamalakshan, B. R. Dandekar, A. M. Chittilappilly Devassy, J. Mondal, and S. Mandal, J. Phys. Chem. B 127, 2198 (2023). doi: 10.1021/acs.jpcb.3c00274
    [10]
    P. Faller, C. Hureau, and O. Berthoumieu, Inorg. Chem. 52, 12193 (2013). doi: 10.1021/ic4003059
    [11]
    J. Sheng, N. K. Olrichs, W. J. Geerts, D. V. Kaloyanova, and J. B. Helms, Sci. Rep. 9, 1 (2019). doi: 10.1038/s41598-018-37186-2
    [12]
    M. Konar, A. Mathew, and S. Dasgupta, ACS Omega 4, 1015 (2019). doi: 10.1021/acsomega.8b03169
    [13]
    J. A. Duce and A. I. Bush, Prog. Neurobiol. 92, 1 (2010). doi: 10.1016/j.pneurobio.2010.04.003
    [14]
    L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, J. Struct. Biol. 155, 30 (2006). doi: 10.1016/j.jsb.2005.09.004
    [15]
    M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, J. Neurol. Sci. 158, 47 (1998). doi: 10.1016/S0022-510X(98)00092-6
    [16]
    B. Ma, F. Zhang, X. Wang, and X. Zhu, Int. J. Biol. Macromol. 98, 717 (2017). doi: 10.1016/j.ijbiomac.2017.01.128
    [17]
    R. Ceron, M. Peimbert, A. Rojo-Dominguez, and H. Najera, J. Biomol. Struct. Dyn. 41, 423 (2023). doi: 10.1080/07391102.2021.2006090
    [18]
    S. E. Hill, T. Miti, T. Richmond, and M. Muschol, PLoS One 6, e18171 (2011). doi: 10.1371/journal.pone.0018171
    [19]
    T. Miti, M. Mulaj, J. D. Schmit, and M. Muschol, Biomacromolecules 16, 326 (2015). doi: 10.1021/bm501521r
    [20]
    J. Wawer, M. Szocinski, M. Olszewski, R. Piatek, M. Naczk, and J. Krakowiak, Int. J. Biol. Macromol. 121, 63 (2019). doi: 10.1016/j.ijbiomac.2018.09.165
    [21]
    B. Zambelli, V. N. Uversky, and S. Ciurli, Biochim. Biophys. Acta 1864, 1714 (2016). doi: 10.1016/j.bbapap.2016.09.008
    [22]
    J. Zhao, X. Shi, V. Castranova, and M. Ding, J. Environ. Pathol. Toxicol. Oncol. 28, 177 (2009). doi: 10.1615/JEnvironPatholToxicolOncol.v28.i3.10
    [23]
    G. Drochioiu, M. Manea, M. Dragusanu, M. Murariu, E. S. Dragan, B. A. Petre, G. Mezo, and M. Przybylski, Biophys. Chem 144, 9 (2009). doi: 10.3390/ijerph17030679
    [24]
    S. J. Li, A. Nakagawa, and T. Tsukihara, Biochem. Biophys. Res. Commun. 324, 529 (2004). doi: 10.1016/j.bbrc.2004.09.078
    [25]
    S. L. Benoit and R. J. Maier, Sci. Rep. 11, 1 (2021). doi: 10.1038/s41598-020-79139-8
    [26]
    L. Jin, W. H. Wu, Q. Y. Li, Y. F. Zhao, and Y. M. Li, Nanoscale 3, 4746 (2011). doi: 10.1039/c1nr11029b
    [27]
    Y. Fan, H. Lan, Z. Qi, R. Liu, and C. Hu, Chemosphere 297, 134241 (2022). doi: 10.1016/j.chemosphere.2022.134241
    [28]
    L. Xing, W. Fan, N. Chen, M. Li, X. Zhou, and S. Liu, J. Raman Spectrosc. 50, 629 (2019). doi: 10.1002/jrs.5567
    [29]
    L. Xing, N. Chen, W. Fan, M. Li, X. Zhou, and S. Liu, Int. J. Biol. Macromol. 132, 929 (2019). doi: 10.1016/j.ijbiomac.2019.04.009
    [30]
    A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, J. Raman Spectrosc. 44, 1061 (2013). doi: 10.1002/jrs.4335
    [31]
    N. Kuhar, S. Sil, and S. Umapathy, Spectrochim. Acta Part A 258, 119712 (2021). doi: 10.1016/j.saa.2021.119712
    [32]
    W. Fan, L. Xing, N. Chen, X. Zhou, Y. Yu, and S. Liu, J. Phys. Chem. B 123, 8057 (2019). doi: 10.1021/acs.jpcb.9b06958
    [33]
    S. Dolui, A. Mondal, A. Roy, U. Pal, S. Das, A. Saha, and N. C. Maiti, J. Phys. Chem. B 124, 50 (2020). doi: 10.1021/acs.jpcb.9b09139
    [34]
    M. R. R. de Planque, B. B. Bonev, J. A. A. Demmers, D. V. Greathouse, R. E. Koeppe, F. Separovic, A. Watts, and J. A. Killian, Biochemistry 42, 5341 (2003). doi: 10.1021/bi027000r
    [35]
    J. A. Sweeney and S. A. Asher, J. Phys. Chem. 94, 4784 (1990). doi: 10.1021/j100375a009
    [36]
    I. Harada, T. Miura, and H. Takeuchi, Spectrochim. Acta Part A 42, 307 (1986). doi: 10.1016/0584-8539(86)80193-3
    [37]
    V. Kocherbitov, J. Latynis, A. Misiunas, J. Barauskas, and G. Niaura, J. Phys. Chem. B 117, 4981 (2013). doi: 10.1021/jp4017954
    [38]
    A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007). doi: 10.1016/j.bbabio.2007.06.004
    [39]
    S. Dolui, A. Roy, U. Pal, A. Saha, and N. C. Maiti, ACS Omega 3, 2452 (2018). doi: 10.1021/acsomega.7b01776
    [40]
    A. Barth and C. Zscherp, Q. Rev. Biophys. 35, 369 (2002). doi: 10.1017/S0033583502003815
    [41]
    K. Huang, N. C. Maiti, N. B. Phillips, P. R. Carey, and M. A. Weiss, Biochemistry 45, 10278 (2006). doi: 10.1021/bi060879g
    [42]
    S. Mangialardo, F. Piccirilli, A. Perucchi, P. Dore, and P. Postorino, J. Raman Spectros. 43, 692 (2012). doi: 10.1002/jrs.3097
    [43]
    P. Ghosh and P. De, ACS Appl. Bio. Mater. 3, 9598 (2020). doi: 10.1021/acsabm.0c01021
    [44]
    C. C. Lee, A. Nayak, A. Sethuraman, G. Belfort, and G. J. McRae, Biophys. J. 92, 3448 (2007). doi: 10.1529/biophysj.106.098608
    [45]
    L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V. N. Uversky, and A. L. Fink, Biochemistry 40, 6036 (2001). doi: 10.1021/bi002555c
    [46]
    A. Chaari, C. Fahy, A. Chevillot-Biraud, and M. Rholam, PLoS One 10, e0142095 (2015). doi: 10.1371/journal.pone.0142095
    [47]
    X. Chen, X. Deng, X. Han, Y. Liang, Z. Meng, R. Liu, W. Su, H. Zhu, and T. Fu, ACS Omega 6, 3307 (2021). doi: 10.1021/acsomega.0c05788
    [48]
    B. S. Moorthy, H. T. Ghomi, M. A. Lill, and E. M. Topp, Biophys. J. 108, 937 (2015). doi: 10.1016/j.bpj.2015.01.004
    [49]
    S. Karmakar, N. Sarkar, and L. M. Pandey, Colloids Surf. B 174, 401 (2019). doi: 10.1016/j.colsurfb.2018.11.032
    [50]
    H. Levine, Protein Sci. 2, 404 (1993). doi: 10.1002/pro.5560020312
    [51]
    M. Biancalana and S. Koide, Biochim. Biophys. Acta 1804, 1405 (2010). doi: 10.1016/j.bbapap.2010.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (141) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return