Turn off MathJax
Article Contents
Xiangyun Zhao, Dong Wei, Xianchi Jin, Ling Jiang, Zhibo Ma, Xueming Yang. Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302012
Citation: Xiangyun Zhao, Dong Wei, Xianchi Jin, Ling Jiang, Zhibo Ma, Xueming Yang. Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302012

Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface

doi: 10.1063/1674-0068/cjcp2302012
More Information
  • We report here scanning tunneling microscopy (STM) observations of bridge-bonded oxygen vacancies (OVs) on the TiO2(110) surface diffusing under the influence of 266 nm ultraviolet (UV) laser irradiation. OV pairs, and even OV trimers, were formed as a result of UV light-induced OV diffusion. There are two stable STM representations of the OV-pair defects, which are interchangeable during scanning. An extended irradiation time (68 min) can lead to the formation of a TiO2(110) surface with predominant OV-pair point defects. Our results enrich the understanding of OV behavior upon UV irradiation, and future photocatalytic studies on reduced rutile TiO2(110) surfaces involving 266 nm UV light can benefit from the knowledge of the observed diffusion of OVs and the formation of OV oligomers. We also provide a plausible way to prepare an OV-pair abundant TiO2(110) surface, a requisite for further investigations of the otherwise unapproachable defects.

     

  • loading
  • [1]
    W. P. Mba, G. N. T. Longandjo, W. Moufouma-Okia, J. P. Bell, R. James, D. A. Vondou, A. Haensler, T. C. Fotso-Nguemo, G. M. Guenang, A. L. D. Tchotchou, P. H. Kamsu-Tamo, R. R. Takong, G. Nikulin, C. J. Lennard, and A. Dosio, Environ. Res. Lett. 13, 055011 (2018). doi: 10.1088/1748-9326/aab048
    [2]
    S. H. M. Butchart, M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr, J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli, J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J. F. Lamarque, F. Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E. Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J. C. Vie, and R. Watson, Science 328, 1164 (2010). doi: 10.1126/science.1187512
    [3]
    K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, K. C. Samir, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenoeder, L. A. da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, and M. Tavoni, Glob. Environ. Change 42, 153 (2017). doi: 10.1016/j.gloenvcha.2016.05.009
    [4]
    G. T. Pecl, M. B. Araujo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I. C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengard, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, J. M. Pandolfi, N. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M. N. Tuanmu, A. Verges, C. Villanueva, T. Wernberg, E. Wapstra, and S. E. Williams, Science 355, eaai9214 (2017). doi: 10.1126/science.aai9214
    [5]
    K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., Part 1 44, 8269 (2005). doi: 10.1143/JJAP.44.8269
    [6]
    M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, Water Res. 44, 2997 (2010). doi: 10.1016/j.watres.2010.02.039
    [7]
    T. P. Yoon, M. A. Ischay, and J. Du, Nat. Chem. 2, 527 (2010). doi: 10.1038/nchem.687
    [8]
    A. Fujishima and K. Honda, Nature 238, 37 (1972). doi: 10.1038/238037a0
    [9]
    I. Sokolovic, M. Reticcioli, M. Calkovsky, M. Wagner, M. Schmid, C. Franchini, U. Diebold, and M. Setvin, Proc. Natl. Acad. Sci. 117, 14827 (2020). doi: 10.1073/pnas.1922452117
    [10]
    R. Pawlak, A. Sadeghi, R. Johr, A. Hinaut, T. Meier, S. Kawai, L. Zajac, P. Olszowski, S. Godlewski, B. Such, T. Glatzel, S. Goedecker, M. Szymonski, and E. Meyer, J. Phys. Chem. C 121, 3607 (2017). doi: 10.1021/acs.jpcc.6b11873
    [11]
    X. Yu, Z. Zhang, C. Yang, F. Bebensee, S. Heissler, A. Nefedov, M. Tang, Q. Ge, L. Chen, B. D. Kay, Z. Dohnalek, Y. Wang, and C. Woell, J. Phys. Chem. C 120, 12626 (2016). doi: 10.1021/acs.jpcc.6b03689
    [12]
    L. A. Miccio, M. Setvin, M. Müller, M. Abadia, I. Piquero, J. Lobo-Checa, F. Schiller, C. Rogero, M. Schmid, D. Sanchez-Portal, U. Diebold, and J. E. Ortega, Nano Lett. 16, 2017 (2016). doi: 10.1021/acs.nanolett.5b05286
    [13]
    Y. Yoon, Y. Du, J. C. Garcia, Z. Zhu, Z. T. Wang, N. G. Petrik, G. A. Kimmel, Z. Dohnalek, M. A. Henderson, R. Rousseau, N. A. Deskins, and I. Lyubinetsky, ChemPhysChem 16, 313 (2015). doi: 10.1002/cphc.201402599
    [14]
    M. Setvin, M. Buchholz, W. Hou, C. Zhang, B. Stoeger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G. S. Parkinson, M. Xu, Y. Wang, M. Schmid, C. Woell, A. Selloni, and U. Diebold, J. Phys. Chem. C 119, 21044 (2015). doi: 10.1021/acs.jpcc.5b07999
    [15]
    P. Huo, J. O. Hansen, U. Martinez, E. Lira, R. Streber, Y. Wei, E. Laegsgaard, B. Hammer, S. Wendt, and F. Besenbacher, J. Phys. Chem. Lett. 3, 283 (2012). doi: 10.1021/jz201616z
    [16]
    J. Matthiesen, S. Wendt, J. O. Hansen, G. K. H. Madsen, E. Lira, P. Galliker, E. K. Vestergaard, R. Schaub, E. Laegsgaard, B. Hammer, and F. Besenbacher, ACS Nano 3, 517 (2009). doi: 10.1021/nn8008245
    [17]
    O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317, 1052 (2007). doi: 10.1126/science.1144787
    [18]
    S. Wendt, R. Schaub, J. Matthiesen, E. K. Vestergaard, E. Wahlstrom, M. D. Rasmussen, P. Thostrup, L. M. Molina, E. Laegsgaard, I. Stensgaard, B. Hammer, and F. Besenbacher, Surf. Sci. 598, 226 (2005). doi: 10.1016/j.susc.2005.08.041
    [19]
    Q. Guo, C. Zhou, Z. Ma, and X. Yang, Adv. Mater. 31, 1901997 (2019). doi: 10.1002/adma.201901997
    [20]
    A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). doi: 10.1016/j.surfrep.2008.10.001
    [21]
    U. I. Gaya and A. H. Abdullah, J. Photochem. Photobio. C-Photochem. Rev. 9, 1 (2008). doi: 10.1016/j.jphotochemrev.2007.12.003
    [22]
    M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011). doi: 10.1016/j.surfrep.2011.01.001
    [23]
    K. Nakata and A. Fujishima, J. Photochem. Photobio. C-Photochem. Rev. 13, 169 (2012). doi: 10.1016/j.jphotochemrev.2012.06.001
    [24]
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev. 114, 9919 (2014). doi: 10.1021/cr5001892
    [25]
    H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Chem. Soc. Rev. 43, 5234 (2014). doi: 10.1039/C4CS00126E
    [26]
    W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Surf. Sci. Rep. 73, 58 (2018). doi: 10.1016/j.surfrep.2018.02.003
    [27]
    B. Wen, W. J. Yin, A. Selloni, and L. M. Liu, J. Phys. Chem. Lett. 9, 5281 (2018). doi: 10.1021/acs.jpclett.8b02286
    [28]
    B. Wen, Q. Hao, W. J. Yin, L. Zhang, Z. Wang, T. Wang, C. Zhou, A. Selloni, X. Yang, and L. M. Liu, Phys. Chem. Chem. Phys. 20, 17658 (2018). doi: 10.1039/C8CP02648C
    [29]
    M. Reticcioli, M. Setvin, M. Schmid, U. Diebold, and C. Franchini, Phys. Rev. B 98, 045306 (2018). doi: 10.1103/PhysRevB.98.045306
    [30]
    T. Shibuya, K. Yasuoka, S. Mirbt, and B. Sanyal, J. Phys. Chem. C 121, 11325 (2017).
    [31]
    H. Cheng and A. Selloni, Phys. Rev. B 79, 092101 (2009). doi: 10.1103/PhysRevB.79.092101
    [32]
    X. Y. Wu, A. Selloni, and S. K. Nayak, J. Chem. Phys. 120, 4512 (2004). doi: 10.1063/1.1636725
    [33]
    Z. W. Wang, D. J. Shu, M. Wang, and N. B. Ming, Surf. Sci. 606, 186 (2012). doi: 10.1016/j.susc.2011.09.014
    [34]
    Z. W. Wang, D. J. Shu, M. Wang, and N. B. Ming, Phys. Rev. B 82, 165309 (2010). doi: 10.1103/PhysRevB.82.165309
    [35]
    T. Shibuya, K. Yasuoka, S. Mirbt, and B. Sanyal, J. Phys. Chem. C 118, 9429 (2014). doi: 10.1021/jp410596d
    [36]
    Z. Zhang, Q. Ge, S. C. Li, B. D. Kay, J. M. White, and Z. Dohnalek, Phys. Rev. Lett. 99, 126105 (2007). doi: 10.1103/PhysRevLett.99.126105
    [37]
    X. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. Yang, and J. G. Hou, J. Chem. Phys. 129, 044703 (2008). doi: 10.1063/1.2955448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (584) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return