Turn off MathJax
Article Contents
Fengyi Li, Xiaoxi Liu, Xingyu Yang, Jianwei Cao, Wensheng Bian. Quantum Dynamics Calculations on Isotope Effects of Hydrogen Transfer Isomerization in the Formic Acid Dimer[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301009
Citation: Fengyi Li, Xiaoxi Liu, Xingyu Yang, Jianwei Cao, Wensheng Bian. Quantum Dynamics Calculations on Isotope Effects of Hydrogen Transfer Isomerization in the Formic Acid Dimer[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301009

Quantum Dynamics Calculations on Isotope Effects of Hydrogen Transfer Isomerization in the Formic Acid Dimer

doi: 10.1063/1674-0068/cjcp2301009
More Information
  • We present a quantum dynamics study on the isotope effects of hydrogen transfer isomerization in the formic acid dimer, and this is achieved by multidimensional dynamics calculations with an efficient quantum mechanical theoretical scheme developed by our group, on a full-dimensional neural network ab initio potential energy surface. The ground-state and fundamental tunneling splittings for four deuterium isotopologues of formic acid dimer are considered, and the calculated results are in very good general agreement with the available experimental measurements. Strong isotope effects are revealed, the mode-specific fundamental excitation effects on the tunneling rate are evidently influenced by the deuterium substitution of H atom with the substitution on the OH bond being more effective than on the CH bond. Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    G. E. Quelch, M. M. Gallo, M. Shen, Y. Xie, H. F. Schaefer, and D. Moncrieff, J. Am. Chem. Soc. 116, 4953 (1994). doi: 10.1021/ja00090a046
    [2]
    J. S. M. Samec, J. E. Bäckvall, P. G. Andersson, and P. Brandt, Chem. Soc. Rev. 35, 237 (2006). doi: 10.1039/b515269k
    [3]
    A. Kohen, R. Cannio, S. Bartolucci, and J. P. Klinman, Nature 399, 496 (1999). doi: 10.1038/20981
    [4]
    F. Wu, Y. Ren, and W. Bian, J. Chem. Phys. 145, 074309 (2016). doi: 10.1063/1.4960789
    [5]
    A. Vdovin, J. Sepioł, N. Urbańska, M. Pietraszkiewicz, A. Mordziński, and J. Waluk, J. Am. Chem. Soc. 128, 2577 (2006). doi: 10.1021/ja054745m
    [6]
    Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Phys. Chem. A 117, 11086 (2013). doi: 10.1021/jp4073608
    [7]
    Y. Ren and W. Bian, J. Phys. Chem. Lett. 6, 1824 (2015). doi: 10.1021/acs.jpclett.5b00672
    [8]
    Y. H. Cheng, Y. C. Zhu, W. Kang, X. Z. Li, and W. Fang, J. Chem. Phys. 156, 124304 (2022). doi: 10.1063/5.0085010
    [9]
    Z. Smedarchina, W. Siebrand, A. Fernández-Ramos, and Q. Cui, J. Am. Chem. Soc. 125, 243 (2003). doi: 10.1021/ja0210594
    [10]
    P. Jiang, X. Chi, Q. Zhu, M. Cheng, and H. Gao, Nat. Commun. 10, 3175 (2019). doi: 10.1038/s41467-019-11086-z
    [11]
    D. Skouteris, D. Manolopoulos, W. Bian, H. J. Werner, L. Lai, and K. Liu, Science 286, 1713 (1999). doi: 10.1126/science.286.5445.1713
    [12]
    Y. Wu, J. Cao, and W. Bian, J. Phys. Chem. A 124, 801 (2020). doi: 10.1021/acs.jpca.9b09822
    [13]
    Y. Wu, J. Cao, H. Ma, C. Zhang, W. Bian, D. Nunez-Reyes, and K. M. Hickson, Sci. Adv. 5, eaaw0446 (2019). doi: 10.1126/sciadv.aaw0446
    [14]
    J. Cao, Y. Wu, and W. Bian, Chin. J. Chem. Phys. 34, 833 (2021). doi: 10.1063/1674-0068/cjcp2110197
    [15]
    W. Bian and H. J. Werner, J. Chem. Phys. 112, 220 (2000). doi: 10.1063/1.480574
    [16]
    K. Karandashev, Z. H. Xu, M. Meuwly, J. Vaníček, and J. O. Richardson, Struct. Dyn. 4, 061501 (2017). doi: 10.1063/1.4996339
    [17]
    Y. Kim, J. Am. Chem. Soc. 118, 1522 (1996). doi: 10.1021/ja953175v
    [18]
    Y. T. Chang, Y. Yamaguchi, W. H. Miller, and H. F. Schaefer, J. Am. Chem. Soc. 109, 7245 (1987). doi: 10.1021/ja00258a001
    [19]
    H. Liu, J. Cao, and W. Bian, J. Phys. Chem. A 124, 6536 (2020). doi: 10.1021/acs.jpca.0c05471
    [20]
    M. Ortlieb and M. Havenith, J. Phys. Chem. A 111, 7355 (2007). doi: 10.1021/jp070763+
    [21]
    K. G. Goroya, Y. Zhu, P. Sun, and C. Duan, J. Chem. Phys. 140, 164311 (2014). doi: 10.1063/1.4872367
    [22]
    G. L. Barnes and E. L. Sibert, J. Chem. Phys. 129, 164317 (2008). doi: 10.1063/1.3000102
    [23]
    D. Luckhaus, Phys. Chem. Chem. Phys. 12, 8357 (2010). doi: 10.1039/c001253j
    [24]
    F. Madeja and M. Havenith, J. Chem. Phys. 117, 7162 (2002). doi: 10.1063/1.1507581
    [25]
    Y. Zhang, W. Li, W. Luo, Y. Zhu, and C. Duan, J. Chem. Phys. 146, 244306 (2017). doi: 10.1063/1.4989863
    [26]
    W. Li, L. Evangelisti, Q. Gou, W. Caminati, and R. Meyer, Angew. Chem. Int. Ed. 58, 859 (2019). doi: 10.1002/anie.201812754
    [27]
    J. O. Richardson, Phys. Chem. Chem. Phys. 19, 966 (2017). doi: 10.1039/C6CP07808G
    [28]
    C. Qu and J. M. Bowman, Phys. Chem. Chem. Phys. 18, 24835 (2016). doi: 10.1039/C6CP03073D
    [29]
    H. Liu, J. Cao, and W. Bian, Front. Chem. 7, 676 (2019). doi: 10.3389/fchem.2019.00676
    [30]
    C. Qu and J. M. Bowman, Faraday Discuss. 212, 33 (2018). doi: 10.1039/C8FD00077H
    [31]
    J. Luo, J. Cao, H. Liu, and W. Bian, J. Chem. Phys. 153, 054309 (2020). doi: 10.1063/5.0015470
    [32]
    J. Luo, J. Cao, H. Liu, and W. Bian, Chin. J. Chem. Phys. 35, 185 (2022). doi: 10.1063/1674-0068/cjcp2112268
    [33]
    Y. Ren, B. Li, and W. Bian, Phys. Chem. Chem. Phys. 13, 2052 (2011). doi: 10.1039/C0CP01186J
    [34]
    W. Bian and J. Cao, Chem. J. Chin. Univ. 42, 2123 (2021).
    [35]
    S. W. Huang and T. Carrington, J. Chem. Phys. 112, 8765 (2000). doi: 10.1063/1.481492
    [36]
    B. Poirier and T. Carrington, J. Chem. Phys. 114, 9254 (2001). doi: 10.1063/1.1367396
    [37]
    B. Poirier and T. Carrington, J. Chem. Phys. 116, 1215 (2002). doi: 10.1063/1.1428752
    [38]
    B. Li and W. Bian, J. Chem. Phys. 129, 024111 (2008). doi: 10.1063/1.2953706
    [39]
    R. E. Wyatt, Phys. Rev. E 51, 3643 (1995). doi: 10.1103/PhysRevE.51.3643
    [40]
    B. Li, Y. Ren, and W. Bian, ChemPhysChem 12, 2419 (2011). doi: 10.1002/cphc.201100144
    [41]
    Z. Zhang, B. Li, Z. Shen, Y. Ren, and W. Bian, Chem. Phys. 400, 1 (2012). doi: 10.1016/j.chemphys.2012.01.010
    [42]
    T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem. Phys. 103, 4129 (1995). doi: 10.1063/1.469597
    [43]
    J. Cao, Y. Wu, H. Ma, Z. Shen, and W. Bian, Phys. Chem. Chem. Phys. 23, 6141 (2021). doi: 10.1039/D0CP05540A
    [44]
    J. Cao, F. Li, W. Xia, and W. Bian, Chin. J. Chem. Phys. 32, 157 (2019). doi: 10.1063/1674-0068/cjcp1901007
    [45]
    R. Chen, K. Shao, B. Fu, and D. H. Zhang, J. Chem. Phys. 152, 204307 (2020). doi: 10.1063/5.0010104
    [46]
    B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009). doi: 10.1080/01442350903234923
    [47]
    C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem. Phys. 139, 134101 (2013). doi: 10.1063/1.4821834
    [48]
    C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016). doi: 10.1063/1.4939030
    [49]
    T. van Mourik, T. H. Dunning, and K. A. Peterson, J. Phys. Chem. A 104, 2287 (2000). doi: 10.1021/jp9925583
    [50]
    T. H. Dunning and K. A. Peterson, J. Chem. Phys. 113, 7799 (2000). doi: 10.1063/1.1316041
    [51]
    F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012). doi: 10.1063/1.4704827
    [52]
    P. Zielke and M. A. Suhm, Phys. Chem. Chem. Phys. 9, 4528 (2007). doi: 10.1039/b706094g
    [53]
    Z. Xue and M. A. Suhm, J. Chem. Phys. 131, 054301 (2009). doi: 10.1063/1.3191728
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (345) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return