Turn off MathJax
Article Contents
Yi-xuan Liu, Zhou-bing Wang, Jing-jing Wang, Kang-zhen Tian, Xin Meng, Gui-lin Mao. Investigation on Binding between Cations and Amides using UV Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301008
Citation: Yi-xuan Liu, Zhou-bing Wang, Jing-jing Wang, Kang-zhen Tian, Xin Meng, Gui-lin Mao. Investigation on Binding between Cations and Amides using UV Raman Spectroscopy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301008

Investigation on Binding between Cations and Amides using UV Raman Spectroscopy

doi: 10.1063/1674-0068/cjcp2301008
More Information
  • The interaction of proteins with salt ions plays an important role in life activities. We used butyramide as a model molecule to investigate the interaction of protein backbones with cations. The experiment was performed in an aqueous solution of metal chloride using UV Raman spectroscopy. It was found that well-hydrated metal cations (Ca2+, Mg2+) tend to bind to C=O in the amide bond, resulting in redistribution of the amide I band peaks. Specifically, the peak intensity ratio of 1655 cm−1 to 1610 cm−1 increases significantly with increasing concentrations. However, this phenomenon is not obviously observed in NaCl solution. Furthermore, we studied the effect of salt ions on the water structures. The addition of Ca2+ and Mg2+ is beneficial to the enhancement of the water signal at the 3400 cm−1 position, while the Na+ at the same concentration is not obvious. The results have shown that the interaction between cations and amides satisfies the following order: Ca2+>Mg2+>Na+, which conforms to the Hofmeister series.


  • loading
  • [1]
    A. Mukhopadhyay and P. Dubey, J. Raman Spectrosc. 49, 736 (2018). doi: 10.1002/jrs.5322
    B. C. Gibb, Nat. Chem. 11, 963 (2019). doi: 10.1038/s41557-019-0355-1
    J. Tang, Nat. Nanotechnol. 14, 1091 (2019). doi: 10.1038/s41565-019-0581-0
    K. P. Gregory, G. R. Elliott, H. Robertson, A. Kumar, E. J. Wanless, G. B. Webber, V. S. J. Craig, G. G. Andersson, and A. J. Page, Phys. Chem. Chem. Phys. 24, 12682 (2022). doi: 10.1039/D2CP00847E
    B. Rana, D. J. Fairhurst, and K. C. Jena, J. Am. Chem. Soc. 144, 17832 (2022). doi: 10.1021/jacs.2c05837
    I. Asakereh, K. Lee, O. A. Francisco, and M. Khajehpour, Chemphyschem 23, e202100884 (2022). doi: 10.1002/cphc.202100884
    S. Cruz-Leon and N. Schwierz, Langmuir 36, 5979 (2020). doi: 10.1021/acs.langmuir.0c00851
    P. H. C. Paiva, Y. L. Coelho, L. H. M. da Silva, M. S. Pinto, M. C. T. Vidigal, and A. C. D. S. Pires, Food Chem. 305, 125463 (2020). doi: 10.1016/j.foodchem.2019.125463
    S. S. Ribeiro, T. G. Castro, C. M. Gomes, and J. C. Marcos, Phys. Chem. Chem. Phys. 23, 25210 (2021). doi: 10.1039/D1CP02477A
    B. C. Gibb, Nat. Chem. 10, 797 (2018). doi: 10.1038/s41557-018-0111-y
    J. H. Jordan, C. L. D. Gibb, A. Wishard, T. Pham, and B. C. Gibb, J. Am. Chem. Soc. 140, 4092 (2018). doi: 10.1021/jacs.8b00196
    W. Wei, X. Chen, and X. Wang, Small 18, 2200921 (2022). doi: 10.1002/smll.202200921
    H. I. Okur, J. Kherb, and P. S. Cremer, J. Am. Chem. Soc. 135, 5062 (2013). doi: 10.1021/ja3119256
    Y. Zhang and P. S. Cremer, Annu. Rev. Phys. Chem. 61, 63 (2010). doi: 10.1146/annurev.physchem.59.032607.093635
    K. D. Collins, G. W. Neilson, J. E. Enderby, Biophys. Chem. 128, 95 (2007). doi: 10.1016/j.bpc.2007.03.009
    P. Jungwirth and B. Winter, Rev. Phys. Chem. 59, 343 (2008). doi: 10.1146/annurev.physchem.59.032607.093749
    Y. An, K. Sun, Y. Qiu, and L. Zhang, Minerals 12, 1070 (2022).
    M. R. Fries, N. F. Conzelmann, L. Guenter, and O. Matsarskaia, M. W. Skoda, R. M. Jacobs, and F. Schreiber, Langmuir 37, 139 (2021). doi: 10.1021/acs.langmuir.0c02618
    A. Kato, Y. Katsuki, and E. Nishimoto, Chem. Phys. Lett. 730, 89 (2019). doi: 10.1016/j.cplett.2019.05.019
    M. E. Richert, G. G. Gochev, and B. Braunschweig, Langmuir 35, 11299 (2019). doi: 10.1021/acs.langmuir.9b01803
    K. Tian, W. Wang, Y. Yao, X. Nie, A. Lu, Y. Wu, and C. Han, J. Raman Spectrosc. 49, 472 (2018). doi: 10.1002/jrs.5306
    M. Arabi, A. Ostovan, Z. Zhang, Y. Wang, M. Arabi, A. Ostovan, Z. Zhang, Y. Wang, R. Mei, L. Fu, and L. Chen, Biosens. Bioelectron. 174, 112825 (2021). doi: 10.1016/j.bios.2020.112825
    F. Nicolson, M. F. Kircher, N. Stone, and P. Matousek, Chem. Soc. Rev. 50, 556 (2021). doi: 10.1039/D0CS00855A
    P. Shvets, O. Dikaya, K. Maksimova, and A. Goikhman, J. Raman Spectrosc. 50, 1226 (2019). doi: 10.1002/jrs.5616
    J. F. Schultz, S. Mahapatra, L. Li, and N. Jiang, Appl. Spectrosc. 74, 1313 (2020). doi: 10.1177/0003702820932229
    J. Wang, K. Liu, S. Jin, L. Jiang, and P. Liangg, Appl. Spectrosc. 74, 130 (2020). doi: 10.1177/0003702819828360
    S. A. Oladepo, K. Xiong, Z. Hong, S. A. Asher, J. Handen, and I. K. Lednev, Chem. Rev. 112, 2604 (2012). doi: 10.1021/cr200198a
    J. Geng, M. Aioub, M. A. El-Sayed, and B. A. Barry, ChemPhysChem 19, 1428 (2018). doi: 10.1002/cphc.201800252
    M. Liu, Y. Shi, M. Wu, Y. Tian, H. Wei, Q. Sun, and B. Man, J. Raman Spectrosc. 51, 750 (2020). doi: 10.1002/jrs.5846
    P. Ortiz-Amezcua, A. Esteban Bedoya-Velasquez, J. A. Benavent-Oltra, D. Pérez-Ramírez, I. Veselovskii, M. Castro-Santiago, and L. Alados-Arboledas, Opt. Express 28, 8156 (2020). doi: 10.1364/OE.383441
    B. W. Lin, Y. H. Tai, Y. C. Lee, D. Xing, H. C. Lin, H. Yamahara, and J. J. Delaunay, Appl. Phys. Lett. 120, 051102 (2022). doi: 10.1063/5.0084907
    Y. Gao, T. Xuan, F. Chen, Y. Wu, X. Guo, Y. Wen, and H. Yang, Sens. Actuators B 304, 127223 (2020). doi: 10.1016/j.snb.2019.127223
    S. C. Epstein, A. R. Huff, E. S. Winesett, C. H. Londergan, and L. K. Charkoudian, Nat. Commun. 10, 2227 (2019). doi: 10.1038/s41467-019-10184-2
    Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006). doi: 10.1021/cr040377d
    M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Müller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 100, 173901 (2008). doi: 10.1103/PhysRevLett.100.173901
    S. Ye, S. Ma, F. Wei, and H. Li, Analyst 137, 4981 (2012). doi: 10.1039/c2an35684h
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (277) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint