Turn off MathJax
Article Contents
Guang-Ping Zhang, Yun-Zhe Sun, Ni-Ping Shi, Chao-Jie Yu, Ya-Qi Kong, Hui Huang, Zi-Qun Wang. Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212176
Citation: Guang-Ping Zhang, Yun-Zhe Sun, Ni-Ping Shi, Chao-Jie Yu, Ya-Qi Kong, Hui Huang, Zi-Qun Wang. Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212176

Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate

doi: 10.1063/1674-0068/cjcp2212176
More Information
  • Single-molecule spin logic gates provide fundamental functions and are of importance in the field of molecular spintronics. Here, by using the first-principles method, the effects of ambient gas molecules (CO2, O2, N2, or H2O) on the functional stability of the investigated single-molecule spin logic gate consisting of two serially connected cobalt dibenzotetraaza[14]annulene (CoDBTAA) molecules between single-walled carbon nanotubes (SWCNTs) electrodes, have been theoretically investigated. The calculated results suggest that the investigated spin logic gate can realize AND, NOR, or XNOR logic functions depending on the definition of the input and output signals. It is found that these logic functions are not affected by CO2 adsorption. On the contrary, these logic functions are no longer retained upon O2, N2, or H2O adsorption. Further analysis reveals that the interaction between the CoDBTAA molecule and the CO2 adsorbate is very weak while it is strong for O2, N2, or H2O molecules. Therefore, the electronic states of the logic gate around Fermi energy (EF) are almost unchanged for CO2 adsorption. While the adsorption of O2, N2, or H2O obviously modifies the electronic states around EF. The strong interaction between CoDBTAA and these three gas adsorbates drives the conductive electronic states to move far away from EF, resulting in the blocking of both spin-up and spin-down currents and further voiding the logic functions. This work suggests that ambient air has an important effect on the functional stability of single-molecule devices and should be carefully evaluated in the future design of functional single-molecule devices.


  • loading
  • [1]
    A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1
    D. Xiang, X. Wang, C. Jia, T. Lee, and X. Guo, Chem. Rev. 116, 4318 (2016). doi: 10.1021/acs.chemrev.5b00680
    A. Vilan, D. Aswal, and D. Cahen, Chem. Rev. 117, 4248 (2017). doi: 10.1021/acs.chemrev.6b00595
    T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, Nat. Rev. Mater. 1, 16002 (2016). doi: 10.1038/natrevmats.2016.2
    L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen, Chem. Soc. Rev. 43, 7378 (2014). doi: 10.1039/C4CS00143E
    C. K. Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys. 3, 5017 (2001). doi: 10.1039/b105279a
    M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). doi: 10.1103/PhysRevB.65.165401
    R. Liu, C. K. Wang, and Z. L. Li, Sci. Rep. 6, 21946 (2016). doi: 10.1038/srep21946
    M. A. Reed, C. Zhou, C. Muller, T. Burgin, and J. Tour, Science 278, 252 (1997). doi: 10.1126/science.278.5336.252
    B. Xu and N. J. Tao, Science 301, 1221 (2003). doi: 10.1126/science.1087481
    M. Z. Wei, Z. Q. Wang, X. X. Fu, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, Phys. E 103, 397 (2018). doi: 10.1016/j.physe.2018.05.041
    R. Liu, J. J. Bi, Z. Xie, K. Yin, D. Wang, G. P. Zhang, D. Xiang, C. K. Wang, and Z. L. Li, Phys. Rev. Appl. 9, 054023 (2018). doi: 10.1103/PhysRevApplied.9.054023
    B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z. F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, and L. Venkataraman, Nat. Nanotech. 10, 522 (2015). doi: 10.1038/nnano.2015.97
    C. Van Dyck and M. A. Ratner, Nano Lett. 15, 1577 (2015). doi: 10.1021/nl504091v
    Z. Q. Wang, M. Z. Wei, M. M. Dong, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, J. Phys. Chem. C 122, 17650 (2018). doi: 10.1021/acs.jpcc.8b03761
    C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, Z. Guangyu, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. Guo, Science 352, 1443 (2016). doi: 10.1126/science.aaf6298
    D. Weckbecker, P. Coto, and M. Thoss, Nano Lett. 17, 3341 (2017). doi: 10.1021/acs.nanolett.6b04813
    G. Tian, D. Sun, Y. Zhang, and X. Yu, Angew. Chem. Int. Ed. 58, 5951 (2019). doi: 10.1002/anie.201900731
    L. Ma, G. Tian, and J. T. Lü, Phys. Rev. B 106, 165416 (2022). doi: 10.1103/PhysRevB.106.165416
    H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Nature 462, 1039 (2009). doi: 10.1038/nature08639
    D. Sun, L. Li, X. Yu, and G. Tian, Phys. Rev. B 99, 125423 (2019). doi: 10.1103/PhysRevB.99.125423
    C. Nacci, F. Ample, D. Bleger, S. Hecht, C. Joachim, and L. Grill, Nat. Commun. 6, 7397 (2015). doi: 10.1038/ncomms8397
    C. E. Smith, S. O. Odoh, S. Ghosh, L. Gagliardi, C. J. Cramer, and C. D. Frisbie, J. Am. Chem. Soc. 137, 15732 (2015). doi: 10.1021/jacs.5b07400
    G. Kuang, S. Z. Chen, W. Wang, T. Lin, K. Chen, X. Shang, P. N. Liu, and N. Lin, J. Am. Chem. Soc. 138, 11140 (2016). doi: 10.1021/jacs.6b07416
    V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002). doi: 10.1016/S0038-1098(02)00090-X
    A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005). doi: 10.1038/nmat1349
    S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011). doi: 10.1039/c1cs15047b
    M. Sun and W. Mi, J. Mater. Chem. C 6, 6619 (2018). doi: 10.1039/C8TC01399C
    M. Urdampilleta, S. Klayatskaya, M. Ruben, and W. Wernsdorfer, ACS Nano 9, 4458 (2015). doi: 10.1021/acsnano.5b01056
    A. Bedoya-Pinto, S. G. Miralles, S. Vélez, A. Atxabal, P. Gargiani, M. Valvidares, F. Casanova, E. Coronado, and L. E. Hueso, Adv. Funct. Mater. 28, 1702099 (2018). doi: 10.1002/adfm.201702099
    G. P. Zhang, Y. Q. Mu, M. Z. Wei, S. Wang, H. Huang, G. C. Hu, Z. L. Li, and C. K. Wang, J. Mater. Chem. C 6, 2105 (2018). doi: 10.1039/C7TC05518H
    X. K. Hong, Y. W. Kuang, C. Qian, Y. M. Tao, H. L. Yu, D. B. Zhang, Y. S. Liu, J. F. Feng, X. F. Yang, and X. F. Wang, J. Phys. Chem. C 120, 668 (2016).
    Y. J. Li, L. Y. Chen, Y. H. Xia, J. M. Zhao, Y. Q. Mu, G. P. Zhang, and Y. Song, Physica E 134, 114896 (2021). doi: 10.1016/j.physe.2021.114896
    Y. Song, C. K. Wang, G. Chen, and G. P. Zhang, Phys. Chem. Chem. Phys. 23, 18760 (2021). doi: 10.1039/D1CP01126J
    S. Koley and S. Chakrabarti, J. Phys. Chem. C 121, 21695 (2017). doi: 10.1021/acs.jpcc.7b06513
    M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, Appl. Phys. Lett. 98, 092110 (2011). doi: 10.1063/1.3562320
    W. Zhao, D. Zou, C. L. Yang, and Z. Sun, J. Mater. Chem. C 5, 8862 (2017). doi: 10.1039/C7TC02312J
    J. Zeng and K. Q. Chen, Phys. Chem. Chem. Phys. 20, 3997 (2018). doi: 10.1039/C7CP07795E
    H. Khaledi, M. M. Olmstead, H. Mohd Ali, and N. F. Thomas, Inorg. Chem. 52, 1926 (2013). doi: 10.1021/ic302150j
    Q. Wu, P. Zhao, Y. Su, S. Li, J. Guo, and G. Chen, RSC Adv. 5, 52938 (2015). doi: 10.1039/C5RA07456H
    Z. Q. Wang, F. Tang, M. M. Dong, M. L. Wang, G. C. Hu, J. C. Leng, C. K. Wang, and G. P. Zhang, Chin. Phys. B 29, 067202 (2020). doi: 10.1088/1674-1056/ab84cf
    H. Kondo, J. Nara, and T. Ohno, J. Phys. Chem. C 115, 6886 (2011). doi: 10.1021/jp1087064
    J. Zeng, K. Q. Chen, and M. Long, Org. Electron. 58, 216 (2018). doi: 10.1016/j.orgel.2018.04.024
    D. Zou, W. Zhao, B. Cui, D. Li, and D. Liu, Phys. Chem. Chem. Phys. 20, 2048 (2018). doi: 10.1039/C7CP06760G
    T. Omiya, P. Poli, H. Arnolds, R. Raval, M. Persson, and Y. Kim, Chem. Commun. 53, 6148 (2017). doi: 10.1039/C7CC01310H
    W. Zhao, D. Zou, Z. Sun, Y. Yu, and C. Yang, Phys. Lett. A 382, 2666 (2018). doi: 10.1016/j.physleta.2018.06.028
    F. Li, J. Huang, J. Wang, and Q. Li, Molecules 24, 1747 (2019). doi: 10.3390/molecules24091747
    QuantumATK version O-2018.06, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html).
    S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys.: Condens. Mat. 32, 015901 (2020). doi: 10.1088/1361-648X/ab4007
    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). doi: 10.1088/0953-8984/14/11/302
    Y. Sun, K. Chen, L. Jia, and H. Li, Phys. Chem. Chem. Phys. 13, 13800 (2011). doi: 10.1039/c0cp02715d
    M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). doi: 10.1103/PhysRevB.31.6207
  • Supporting-Information.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (480) PDF downloads(29) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint