Turn off MathJax
Article Contents
Haidi Wang, Tao Li, Yufan Yao, Xiaofeng Liu, Weiduo Zhu, Zhao Chen, Zhongjun Li, Wei Hu. Atomistic Modeling of Lithium Materials from Deep Learning Potential with Ab Initio Accuracy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211173
Citation: Haidi Wang, Tao Li, Yufan Yao, Xiaofeng Liu, Weiduo Zhu, Zhao Chen, Zhongjun Li, Wei Hu. Atomistic Modeling of Lithium Materials from Deep Learning Potential with Ab Initio Accuracy[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211173

Atomistic Modeling of Lithium Materials from Deep Learning Potential with Ab Initio Accuracy

doi: 10.1063/1674-0068/cjcp2211173
More Information
  • Lithium has been paid great attention in recent years thanks to its significant applications for battery and lightweight alloy. Developing a potential model with high accuracy and efficiency is important for theoretical simulation of lithium materials. Here, we build a deep learning potential (DP) for elemental lithium based on a concurrent-learning scheme and DP representation of the density-functional theory (DFT) potential energy surface (PES), the DP model enables material simulations with close-to DFT accuracy but at much lower computational cost. The simulations show that basic parameters, equation of states, elasticity, defects and surface are consistent with the first principles results. More notably, the liquid radial distribution function (RDF) based on our DP model is found to match well with experiment data. Our results demonstrate that the developed DP model can be used for the simulation of lithium materials.


  • loading
  • [1]
    N. E. Prasad, A. Gokhale, and P. R. Rao, Sadhana 28, 209 (2003). doi: 10.1007/BF02717134
    N. E. Prasad, A. Gokhale, and R. Wanhill, Aluminumlithium Alloys: Processing, Properties, and Applications, Butterworth-Heinemann, (2013).
    T. C. Chang, J. Y. Wang, C. L. Chu, and S. Lee, Mater. Lett. 60, 3272 (2006). doi: 10.1016/j.matlet.2006.03.052
    N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Biochem. Pharmacol. 18, 252 (2015). doi: 10.1016/j.mattod.2014.10.040
    V. Santoro, D. D. DiJulio, and P. M. Bentley, J. Phys.: Conf. Ser. 746, 012012 (2016). doi: 10.1088/1742-6596/746/1/012012
    Y. C. Wang, J. Lv and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012). doi: 10.1016/j.cpc.2012.05.008
    J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 19 (2011).
    S. A. Mack, S. M. Griffin, and J. B. Neaton, Proc. Natl. Acad. Sci. USA 116, 9197 (2019). doi: 10.1073/pnas.1821533116
    K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya, Nature 419, 597 (2002). doi: 10.1038/nature01098
    V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, Science 298, 1213 (2002). doi: 10.1126/science.1078535
    T. Matsuoka and K. Shimizu, Nature 458, 186 (2009). doi: 10.1038/nature07827
    C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H. Mao, Nat. Phys. 7, 211 (2011). doi: 10.1038/nphys1864
    G. J. Ackland, M. Dunuwille, M. Martinez-Canales, I. Loa, R. Zhang, S. Sinogeikin, W. Cai, and S. Deemyad, Science 356, 1254 (2017). doi: 10.1126/science.aal4886
    A. M. J. Schaeffer, W. B. Talmadge, S. R. Temple, and S. Deemyad, Phys. Rev. Lett. 109, 185702 (2012). doi: 10.1103/PhysRevLett.109.185702
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). doi: 10.1103/PhysRevLett.55.2471
    S. Elatresh, S. Bonev, E. Gregoryanz, and N. Ashcroft, Phys. Rev. B 94, 104107 (2016). doi: 10.1103/PhysRevB.94.104107
    E. R. Hernández, A. Rodriguez-Prieto, A. Bergara, and D. Alfe, Phys. Rev. Lett. 104, 185701 (2010). doi: 10.1103/PhysRevLett.104.185701
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). doi: 10.1103/PhysRev.140.A1133
    J. E. Jones, Proc. Math. Phys. Eng. Sci. 106, 463 (1924).
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985). doi: 10.1103/PhysRevB.31.5262
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). doi: 10.1103/PhysRevB.29.6443
    M. I. Baskes, Phys. Rev. B 46, 2727 (1992). doi: 10.1103/PhysRevB.46.2727
    J. R. Vella, F. H. Stillinger, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Phys. Chem. B 119, 8960 (2015). doi: 10.1021/jp5077752
    Z. Cui, F. Gao, Z. Cui, and J. Qu, Model. Simul. Mat. Sci. Eng. 20, 015014 (2011). doi: https://iopscience.iop.org/article/10.1088/0965-0393/20/1/015014
    A. Nichol and G. J. Ackland, Phys. Rev. B 93, 1 (2016).
    W. S Ko and J. Bae, Comput. Mater. Sci. 129, 202 (2017). doi: 10.1016/j.commatsci.2016.12.018
    J. Dorrell and L. B. Pártay, J. Phys. Chem. B 124, 6015 (2020). doi: 10.1021/acs.jpcb.0c03882
    L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys. Rev. Lett. 120, 143001 (2018). doi: 10.1103/PhysRevLett.120.143001
    J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). doi: 10.1103/PhysRevLett.98.146401
    A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403 (2010). doi: 10.1103/PhysRevLett.104.136403
    A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, J. Comput. Phys. 285, 316 (2015). doi: 10.1016/j.jcp.2014.12.018
    A. V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016). doi: 10.1137/15M1054183
    M. F. C. Andrade, H. Ko, L. Zhang, R. Car, and A. Selloni, Chem. Sci. 11, 2335 (2020). doi: 10.1039/C9SC05116C
    L. Zhang, D Y. Lin, H. Wang, R. Car, and W. E, Phys. Rev. Mater. 3, 023804 (2019). doi: 10.1103/PhysRevMaterials.3.023804
    J. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. Zhang, Nat. Commun. 11, 1 (2020). doi: 10.1038/s41467-019-13993-7
    H. Wang, Y. Zhang, L. Zhang, and H. Wang, Front. Chem. 8, 589795 (2020). doi: 10.3389/fchem.2020.589795
    X. Wang, H. Wang, Q. Luo, and J. Yang, J. Chem. Phys. 157, 074304 (2022). doi: 10.1063/5.0100505
    J. Behler, J. Chem. Phys 134, 074106 (2011). doi: 10.1063/1.3553717
    H. Wang, L. Zhang, J. Han, and W. E, Comput. Phys. Commun. 228, 178 (2018). doi: 10.1016/j.cpc.2018.03.016
    L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and W. E, NIPS'18 4441 (2018). doi: 10.48550/arXiv.1805.09003
    Y. Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, H. Wang, and W. E, Comput. Phys. Commun. 253, 107206 (2020). doi: 10.1016/j.cpc.2020.107206
    S. Plimpton, J. Comput. Phys. 117, 1 (1995). doi: 10.1006/jcph.1995.1039
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    J. D. Pack and H. J. Monkhorst, Phys. Rev. B 16, 1748 (1977). doi: 10.1103/PhysRevB.16.1748
    D. P. Kingma and J. Ba, in 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015; Conference Track Proceedings, Y. Bengio and Y. LeCun Eds., (2015).
    M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and M. Asta, Sci. Data 2, 1 (2015). doi: 10.1038/sdata.2015.9
    S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). doi: 10.1016/j.commatsci.2012.10.028
    D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996). doi: 10.1063/1.471221
    P. S. Salmon, I. Petri, P. H. De Jong, P. Verkerk, H. E. Fischer, and W. S. Howells, J. Phys.: Condens. Matter 16, 195 (2004). doi: 10.1088/0953-8984/16/3/002
  • suppl_data.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (407) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint