Turn off MathJax
Article Contents
Xu Kang, Yifei Zhu, Juanjuan Zhang, Chao Xu, Zhenggang Lan. On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211171
Citation: Xu Kang, Yifei Zhu, Juanjuan Zhang, Chao Xu, Zhenggang Lan. On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211171

On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound

doi: 10.1063/1674-0068/cjcp2211171
More Information
  • Corresponding author: E-mail: zhenggang.lan@m.scnu.edu.cn
  • Received Date: 2022-11-28
  • Accepted Date: 2023-03-06
  • Available Online: 2023-03-11
  • As a widely-used sunscreen compound, the caffeic acid (CA) shows the strong UV absorption, while the photoinduced reaction mechanisms behind its photoprotection ability are not fully understood. We try to investigate the photoinduced internal conversion dynamics of CA in order to explore the photoprotection mechanism. The most stable CA isomer is selected to examine its nonadiabatic dynamics using the on-the-fly surface hopping simulations at the semi-empirical level of electronic-structure theory. The dynamics starting from different electronic states are simulated to explore the dependence of the photoinduced reaction channels on the excitation wavelengths. Several S1/S0 conical intersections, driven by the H-atom detachments and the ring deformations, have been found to be responsible for the nonadiabatic decay of the CA. The simulation results show that the branching ratios towards these intersections are modified by the light with different excitation energies. This provides the valuable information for the understanding of the photoprotection mechanism of the CA compound.

     

  • loading
  • [1]
    J. Frederick, H. Snell, and E. Haywood, Photochem. Photobiol. 50, 443 (1989). doi: 10.1111/j.1751-1097.1989.tb05548.x
    [2]
    G. P. Pfeifer and A. Besaratinia, Photochem. Photobiol. Sci. 11, 90 (2012). doi: 10.1039/c1pp05144j
    [3]
    L. A. Baker, B. Marchetti, T. N. Karsili, V. G. Stavros, and M. N. Ashfold, Chem. Soc. Rev. 46, 3770 (2017). doi: 10.1039/C7CS00102A
    [4]
    N. D. Rodrigues, M. Staniforth, and V. G. Stavros, Proc. R. Soc. A Math.Phys. Eng. Sci. 472, 20160677 (2016). doi: 10.1098/rspa.2016.0677
    [5]
    N. D. Rodrigues and V. G. Stavros, Sci. Prog. 101, 8 (2018). doi: 10.3184/003685018X15166183479666
    [6]
    V. G. Stavros, Nat. Chem. 6, 955 (2014). doi: 10.1038/nchem.2084
    [7]
    C. A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya, Arch. Environ. Contam. Toxicol. 70, 265 (2016). doi: 10.1007/s00244-015-0227-7
    [8]
    S. L. Schneider and H. W. Lim, J. Am. Acad. Dermatol. 80, 266 (2019). doi: 10.1016/j.jaad.2018.06.033
    [9]
    M. D. Horbury, L. A. Baker, W. D. Quan, S. E. Greenough, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 17691 (2016). doi: 10.1039/C6CP01595F
    [10]
    A. Le Person, A. S. Lacoste, and J. P. Cornard, J. Photochem. Photobiol. A Chem. 265, 10 (2013). doi: 10.1016/j.jphotochem.2013.05.004
    [11]
    R. Świsłocka, Spectrochim. Acta A Mol. Biomol. Spectrosc. 100, 21 (2013). doi: 10.1016/j.saa.2012.01.048
    [12]
    C. N. Cao, C. F. Liu, L. Zhao, and G. W. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118565 (2020). doi: 10.1016/j.saa.2020.118565
    [13]
    S. Wang, S. Schatz, M. C. Stuhldreier, H. Böhnke, J. Wiese, C. Schröder, T. Raeker, B. Hartke, J. K. Keppler, K. Schwarz, F. Renth, and F. Temps , Phys. Chem. Chem. Phys. 19, 30683 (2017). doi: 10.1039/C7CP05301K
    [14]
    A. Urbaniak, M. Szeląg, and M. Molski, Comput. Theor. Chem. 1012, 33 (2013). doi: 10.1016/j.comptc.2013.02.018
    [15]
    J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, and K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083
    [16]
    J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, and T. S. Zwier, J. Am. Chem. Soc. 136, 14780 (2014). doi: 10.1021/ja5059026
    [17]
    L. A. Baker, M. D. Horbury, S. E. Greenough, F. Allais, P. S. Walsh, S. Habershon, and V. G. Stavros, J. Phys. Chem. Lett. 7, 56 (2016). doi: 10.1021/acs.jpclett.5b02474
    [18]
    F. Liu, L. Du, Z. Lan, and J. Gao, Photochem. Photobiol. Sci. 16, 211 (2017). doi: 10.1039/C6PP00367B
    [19]
    L. A. Baker, M. Staniforth, A. L. Flourat, F. Allais, and V. G. Stavros, ChemPhotoChem 2, 743 (2018). doi: 10.1002/cptc.201800060
    [20]
    X. Zhao, J. Luo, S. Yang, and K. Han, J. Phys. Chem. Lett. 10, 4197 (2019). doi: 10.1021/acs.jpclett.9b01651
    [21]
    X. Zhao, J. Luo, Y. Liu, P. Pandey, S. Yang, D. Wei, and K. Han, J. Phys. Chem. Lett. 10, 5244 (2019). doi: 10.1021/acs.jpclett.9b02175
    [22]
    M. Horbury, W. D. Quan, A. Flourat, F. Allais, and V. Stavros, Phys. Chem. Chem. Phys. 19, 21127 (2017). doi: 10.1039/C7CP04070A
    [23]
    E. M. Tan, M. Hilbers, and W. J. Buma, J. Phys. Chem. Lett. 5, 2464 (2014). doi: 10.1021/jz501140b
    [24]
    J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, J. Photochem. Photobiol. C 13, 91 (2012). doi: 10.1016/j.jphotochemrev.2011.12.001
    [25]
    X. P. Chang, C. X. Li, B. B. Xie, and G. Cui, J. Phys. Chem. A 119, 11488 (2015). doi: 10.1021/acs.jpca.5b08434
    [26]
    N. Rodrigues, N. Cole-Filipiak, M. Horbury, M. Staniforth, T. Karsili, Y. Peperstraete, and V. Stavros, J. Photochem. Photobiol. A 353, 376 (2018). doi: 10.1016/j.jphotochem.2017.11.042
    [27]
    Y. Peperstraete, M. Staniforth, L. A. Baker, N. D. Rodrigues, N. C. Cole-Filipiak, W. D. Quan, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 28140 (2016). doi: 10.1039/C6CP05205C
    [28]
    M. D. Horbury, L. A. Baker, N. D. Rodrigues, W. D. Quan, and V. G. Stavros, Chem. Phys. Lett. 673, 62 (2017). doi: 10.1016/j.cplett.2017.02.004
    [29]
    F. Borges, J. L. Lima, I. Pinto, S. Reis, and C. Siquet, Helv. Chim. Acta 86, 3081 (2003). doi: 10.1002/hlca.200390250
    [30]
    Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski, and S. Mahapatra, J. Chem. Phys. 122, 224315 (2005). doi: 10.1063/1.1906218
    [31]
    A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 105, 9275 (2001). doi: 10.1021/jp011260l
    [32]
    C. Xie and H. Guo, Chem. Phys. Lett. 683, 222 (2017). doi: 10.1016/j.cplett.2017.02.026
    [33]
    P. Mulder, H. G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. Pedulli, and K. Ingold, J. Phys. Chem. A 109, 2647 (2005). doi: 10.1021/jp047148f
    [34]
    K. R. Yang, X. Xu, J. Zheng, and D. G. Truhlar, Chem. Sci. 5, 4661 (2014). doi: 10.1039/C4SC01967A
    [35]
    M. N. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. Nix, and T. A. Oliver, Proc. Natl. Acad. Sci. 105, 12701 (2008). doi: 10.1073/pnas.0800463105
    [36]
    M. Barbatti, A. J. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza, and H. Lischka, Proc. Natl. Acad. Sci. 107, 21453 (2010). doi: 10.1073/pnas.1014982107
    [37]
    K. Kleinermanns, D. Nachtigallová, and M. S. de Vries, Int. Rev. Phys. Chem. 32, 308 (2013). doi: 10.1080/0144235X.2012.760884
    [38]
    C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem. Rev. 104, 1977 (2004). doi: 10.1021/cr0206770
    [39]
    B. G. Levine and T. J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007). doi: 10.1146/annurev.physchem.57.032905.104612
    [40]
    C. X. Li, W. W. Guo, B. B. Xie, and G. Cui, J. Chem. Phys. 145, 074308 (2016). doi: 10.1063/1.4961261
    [41]
    A. L. Sobolewski and W. Domcke, Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase, Dordrecht: Springer 93 (2002).
    [42]
    T. N. Karsili, B. Marchetti, M. N. Ashfold, and W. Domcke, J. Phys. Chem. A 118, 11999 (2014). doi: 10.1021/jp507282d
    [43]
    X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. A 117, 4785 (2013). doi: 10.1021/jp402180p
    [44]
    X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. B 117, 15976 (2013). doi: 10.1021/jp408799b
    [45]
    M. R. Silva-Junior and W. Thiel, J. Chem. Theory Comput. 6, 1546 (2010). doi: 10.1021/ct100030j
    [46]
    Z. Lan, E. Fabiano, and W. Thiel, ChemPhysChem 10, 1225 (2009). doi: 10.1002/cphc.200900030
    [47]
    W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495 (2000). doi: 10.1007/s002149900083
    [48]
    A. Koslowski, M. E. Beck, and W. Thiel, J. Comput. Chem. 24, 714 (2003). doi: 10.1002/jcc.10210
    [49]
    T. W. Keal, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 118, 837 (2007). doi: 10.1007/s00214-007-0331-5
    [50]
    T. Shiozaki, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1331 (2018). doi: 10.1002/wcms.1331
    [51]
    E. Wigner, Am. Phys. Soc. 40, 749 (1932). doi: 10.1103/PhysRev.40.749
    [52]
    W. Thiel, MNDO Program, Version 6.1 (2007).
    [53]
    J. C. Tully, J. Chem. Phys. 93, 1061 (1990). doi: 10.1063/1.459170
    [54]
    G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007). doi: 10.1063/1.2715585
    [55]
    L. Du and Z. Lan, J. Chem. Theory Comput. 11, 1360 (2015). doi: 10.1021/ct501106d
    [56]
    D. Hu, Y. F. Liu, A. L. Sobolewski, and Z. Lan, Phys. Chem. Chem. Phys. 19, 19168 (2017). doi: 10.1039/C7CP01732D
    [57]
    D. Hu, Y. Xie, J. Peng, and Z. Lan, J. Chem. Theory Comput. 17, 3267 (2021). doi: 10.1021/acs.jctc.0c01249
    [58]
    A. Prlj, L. M. Ibele, E. Marsili, and B. F. Curchod, J. Phys. Chem. Lett. 11, 5418 (2020). doi: 10.1021/acs.jpclett.0c01439
    [59]
    M. Barbatti, J. Chem. Theory Comput. 16, 4849 (2020). doi: 10.1021/acs.jctc.0c00501
    [60]
    J. Suchan, D. Hollas, B. F. Curchod, and P. Slavíček, Faraday Discuss. 212, 307 (2018). doi: 10.1039/C8FD00088C
    [61]
    A. Belay, Infection 1, 3 (2012). doi: 10.5923/j.biophysics.20120202.01
    [62]
    P. Å. Malmqvist and B. O. Roos, Chem. Phys. Lett. 155, 189 (1989). doi: 10.1016/0009-2614(89)85347-3
    [63]
    J. Olsen, Int. J. Quantum Chem. 111, 3267 (2011). doi: 10.1002/qua.23107
    [64]
    J. Finley, P. Å. Malmqvist, B. O. Roos, and L. SerranoAndrés, Chem. Phys. Lett. 288, 299 (1998). doi: 10.1016/S0009-2614(98)00252-8
    [65]
    E. K. Gross and N. T. Maitra, Fundamentals of Timedependent Density Functional Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 99 (2012).
    [66]
    B. G. Levine, C. Ko, J. Quenneville, and T. J. MartÍnez, Mol. Phys. 104, 1039 (2006). doi: 10.1080/00268970500417762
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (254) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return