Turn off MathJax
Article Contents
Naigui Liu, Delu Gao, Dunyou Wang. Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211168
Citation: Naigui Liu, Delu Gao, Dunyou Wang. Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211168

Ab Initio Molecular Dynamics Study of Dissociative Adsorption of H2 on Defective Graphene-supported Cu19 Cluster

doi: 10.1063/1674-0068/cjcp2211168
More Information
  • Corresponding author: E-mail: dywang@sdnu.edu.cn
  • Received Date: 2022-11-23
  • Accepted Date: 2023-01-11
  • Available Online: 2023-02-02
  • The dissociative adsorption of H2 on Cu19 and defective graphene-supported Cu19 clusters are investigated using ab initio molecular dynamics. The molecular-level trajectories show that, on Cu19, the preferred adsorption site is the bridge-hollow site, where the two H atoms are adsorbed at the bridge and hollow sites beside a Cu atom, with an adsorption energy of –0.74 eV. In contrast, on the defective graphene-supported Cu19 cluster, the favorite adsorption site is located where the two H atoms are adsorbed at hollow-hollow sites with an adsorption energy of –1.27 eV. In general, the average adsorption energy on the defective graphene-supported Cu19 cluster is –1.07 eV, which is about 84% larger than that of –0.58 eV on the Cu19 cluster. This indicates that the adsorption capacity is greatly enhanced for the dissociative adsorption of H2 on the defective graphene-supported Cu19 cluster. The d-band center shifts to the Fermi level, illustrating the enhanced adsorption capacity on the defective graphene-supported Cu19 cluster. The integrated crystal orbital Hamilton population analysis reveals that stronger bond interactions between hydrogen atoms with their bonded Cu atoms lead to much larger adsorption energies on the defective graphene-supported Cu19 cluster compared to the Cu19 cluster.

     

  • loading
  • [1]
    B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Int. J. Hydrogen Energy 32, 1121 (2007). doi: 10.1016/j.ijhydene.2006.11.022
    [2]
    R. S. Dhayal, W. E. van Zyl, and C. W. Liu, Dalton Trans. 48, 3531 (2019). doi: 10.1039/C8DT04639E
    [3]
    S. Sakong and A. Groß, Surf. Sci. 525, 107 (2003). doi: 10.1016/S0039-6028(02)02550-5
    [4]
    S. Amaya-Roncancio, C. Toncón-Leal, I. Arellano-Ramírez, D. A. Torres-Cerón, E. Restrepo-Parra, and K. Sapag, Chem. Phys. 559, 111546 (2022). doi: 10.1016/j.chemphys.2022.111546
    [5]
    L. Álvarez-Falcón, F. Viñes, A. Notario-Estévez, and F. Illas, Surf. Sci. 646, 221 (2016). doi: 10.1016/j.susc.2015.08.005
    [6]
    E. W. Smeets, G. Füchsel, and G. J. Kroes, J. Phys. Chem. C 123, 23049 (2019). doi: 10.1021/acs.jpcc.9b06539
    [7]
    G. H. Guvelioglue, P. Ma, X. He, R. C. Forrey, and H. Cheng, Phys. Rev. B 73, 155436 (2006). doi: 10.1103/PhysRevB.73.155436
    [8]
    F. Göltl, C. Houriez, M. Guitou, G. Chambaud, and P. Sautet, J. Phys. Chem. C 118, 5374 (2014). doi: 10.1021/jp4118634
    [9]
    E. C. Tyo and S. Vajda, Nat. Nanotech. 10, 577 (2015). doi: 10.1038/nnano.2015.140
    [10]
    Z. Luo, A. W. Castleman Jr., and S. N. Khanna, Chem. Rev. 116, 14456 (2016). doi: 10.1021/acs.chemrev.6b00230
    [11]
    M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, and D. Ma, ACS Cent. Sci. 7, 262 (2020).
    [12]
    L. Triguero, U. Wahlgren, P. Boussard, and P. Siegbahn, Chem. Phys. Lett. 237, 550 (1995). doi: 10.1016/0009-2614(95)00353-6
    [13]
    X. J. Kuang, X. Q. Wang and G. B. Liu, Transit. Met. Chem. 35, 841 (2010). doi: 10.1007/s11243-010-9402-x
    [14]
    G. H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H. Cheng, Phys. Rev. Lett. 94, 026103 (2005). doi: 10.1103/PhysRevLett.94.026103
    [15]
    L. Ma, M. Melander, T. Weckman, S. Lipasti, K. Laasonen, and J. Akola, J. Mol. Graphics Model. 65, 61 (2016). doi: 10.1016/j.jmgm.2016.02.007
    [16]
    F. Montejo-Alvaro, J. Oliva, A. Zarate, M. Herrera-Trejo, H. Hdz-García, and A. Mtz-Enriquez, Phys. E 110, 52 (2019). doi: 10.1016/j.physe.2019.02.005
    [17]
    Y. Yang, A. C. Reber, S. E. Gilliland III, C. E. Castano, B. F. Gupton, and S. N. Khanna, J. Phys. Chem. C 122, 25396 (2018). doi: 10.1021/acs.jpcc.8b07538
    [18]
    F. Meng, M. Peng, Y. Chen, X. Cai, F. Huang, L. Yang, X. Liu, T. Li, X. Wen, N. Wang, D. Xiao, H. Jiang, L. Xia, H. Liu, and D. Ma, Appl. Catal. B: Environ. 301, 120826 (2022). doi: 10.1016/j.apcatb.2021.120826
    [19]
    R. Shi, J. Zhao, S. Liu, W. Sun, H. Li, P. Hao, Z. Li, and J. Ren, Carbon 130, 185 (2018). doi: 10.1016/j.carbon.2018.01.011
    [20]
    D. H. Lim, J. H. Jo, D. Y. Shin, J. Wilcox, H. C. Ham, and S. W. Nam, Nanoscale 6, 5087 (2014). doi: 10.1039/C3NR06539A
    [21]
    T. Abdollahi and D. Farmanzadeh, J. Alloys Compd. 735, 117 (2018). doi: 10.1016/j.jallcom.2017.11.051
    [22]
    S. Darby, T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts, J. Chem. Phys. 116, 1536 (2002). doi: 10.1063/1.1429658
    [23]
    M. Yang, K. A. Jackson, C. Koehler, T. Frauenheim, and J. Jellinek, J. Chem. Phys. 124, 024308 (2006). doi: 10.1063/1.2150439
    [24]
    M. Kabir, A. Mookerjee, and A. K. Bhattacharya, Phys. Rev. A 69, 043203 (2004). doi: 10.1103/PhysRevA.69.043203
    [25]
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    [26]
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    [27]
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [28]
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    [29]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [30]
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009). doi: 10.1088/0953-8984/21/8/084204
    [31]
    B. Hammer and J. K. Nørskov, Adv. Catal. 45, 71 (2000). doi: 10.1016/S0360-0564(02)45013-4
    [32]
    R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993). doi: 10.1021/j100135a014
    [33]
    R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, J. Comupt. Chem. 41, 1931 (2020). doi: 10.1002/jcc.26353
    [34]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016). doi: 10.1002/jcc.24300
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (350) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return