Turn off MathJax
Article Contents
Xiu-dong Jia, Jian-hong Bian, Bo Jin, Rui Sun, Bin Huo, Xiao-ling Guan, Chen-fei Guo, Caixia Yuan, Yan-bo Wu. Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211163
Citation: Xiu-dong Jia, Jian-hong Bian, Bo Jin, Rui Sun, Bin Huo, Xiao-ling Guan, Chen-fei Guo, Caixia Yuan, Yan-bo Wu. Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211163

Adaptability of Electron-Localization Strategy for Achieving Planar Tetracoordination: Nitrogen versus Carbon

doi: 10.1063/1674-0068/cjcp2211163
More Information
  • A case study has been performed on the adaptability of electron-localization strategy in designing clusters with planar tetracoordinate nitrogen (ptN) through the detailed comparison between ptN clusters NLi3E+ (E = N, P, As) and their ptC counterparts CLi3E (E = N, P, As). The results revealed that NLi3E+ clusters possessed similar planar geometries to CLi3E, which are both determined by the existence of a localized π bond. Nevertheless, NLi3E+ clusters possess the obviously higher electronic, thermodynamic, and dynamic stabilities than CLi3E clusters, as reflected by wider HOMO–LUMO gaps (4.58–4.68 eV versus 2.10–2.74 eV), the overall lower-lying positions on potential energy surfaces verified at the CCSD(T)/aug-cc-pVTZ level, and better rigidity during the molecular dynamic simulations at the PBE/DZVP level. Therefore, our results suggest that electron-localization strategy may be more suitable for designing the clusters, whose central atom possesses relatively higher electronegativity and more favours the localized bond. In addition, due to the good stability, the cationic NLi3E+ clusters designed in this work are suitable for gas phase generation, mass-selection, and spectroscopic characterization.

     

  • loading
  • [1]
    R. Hoffmann, R. W. Alder, and C. F. Wilcox, J. Am. Chem. Soc. 92, 4992 (1970). doi: 10.1021/ja00719a044
    [2]
    J. H. van’t Hoff, Arch. Neerl. Sci. Exactes Nat. 9, 445 (1874).
    [3]
    J. A. Le Bel, Bull. Soc. Chim. Fr. 22, 337 (1874).
    [4]
    R. Hoffmann, Pure. Appl. Chem. 28, 181 (1971). doi: 10.1351/pac197128020181
    [5]
    K. Sorger and P. v. R. Schleyer, J. Mol. Struc.: THEOCHEM 338, 317 (1995). doi: 10.1016/0166-1280(95)04233-V
    [6]
    L. Radom and D. R. Rasmussen, Pure Appl. Chem. 70, 1977 (1998). doi: 10.1351/pac199870101977
    [7]
    D. Rottger and G. Erker, Angew. Chem. Int. Ed. Engl. 36, 812 (1997). doi: 10.1002/anie.199708121
    [8]
    W. Siebert and A. Gunale, Chem. Soc. Rev. 28, 367 (1999). doi: 10.1039/a801225c
    [9]
    R. Choukroun and P. Cassoux, Acc. Chem. Res. 32, 494 (1999). doi: 10.1021/ar970304z
    [10]
    L. S. Wang, A. I. Boldyrev, X. Li, and J. Simons, J. Am. Chem. Soc. 122, 7681 (2000). doi: 10.1021/ja993081b
    [11]
    J. B. Collins, J. D. Dill, E. D. Jemmis, Y. Apeloig, P. v. R. Schleyer, R. Seeger, and J. A. Pople, J. Am. Chem. Soc. 98, 5419 (1976). doi: 10.1021/ja00434a001
    [12]
    L. M. Yang, E. Ganz, Z. Chen, Z. X. Wang, and P. v. R. Schleyer, Angew. Chem. Int. Ed. 54, 9468 (2015). doi: 10.1002/anie.201410407
    [13]
    V. Vassilev-Galindo, S. Pan, K. J. Donald, and G. Merino, Nat. Rev. Chem. 2, 0114 (2018). doi: 10.1038/s41570-018-0114
    [14]
    P. Liu, J. H. Bian, Q. Wang, F. Huang, D. Li, and Y. B. Wu, Phys. Chem. Chem. Phys. 20, 12642 (2018). doi: 10.1039/C8CP01193A
    [15]
    X. F. Zhao, J. H. Bian, F. Huang, C. Yuan, Q. Wang, P. Liu, D. Li, X. Wang, and Y. B. Wu, RSC Adv. 8, 36521 (2018). doi: 10.1039/C8RA07664B
    [16]
    S. Pan, J. L. Cabellos, M. Orozco-Ic, P. K. Chattaraj, L. Zhao, and G. Merino, Phys. Chem. Chem. Phys. 20, 12350 (2018). doi: 10.1039/C8CP01009A
    [17]
    J. C. Guo, L. Y. Feng, C. Dong, and H. J. Zhai, J. Phys. Chem. A 122, 8370 (2018). doi: 10.1021/acs.jpca.8b08573
    [18]
    J. C. Guo, L. Y. Feng, J. Barroso, G. Merino, and H. J. Zhai, Chem. Commun. 56, 8305 (2020). doi: 10.1039/D0CC02973D
    [19]
    M. H. Wang, X. Dong, Y. H. Ding, and Z. H. Cui, Chem. Commun. 56, 7285 (2020). doi: 10.1039/D0CC02236E
    [20]
    R. Sun, X. F. Zhao, B. Jin, B. Huo, J. H. Bian, X. L. Guan, C. Yuan, and Y. B. Wu, Phys. Chem. Chem. Phys. 22, 17062 (2020). doi: 10.1039/D0CP01106A
    [21]
    J. H. Bian, B. Jin, X. F. Zhao, R. Sun, C. Yuan, C. Y. Zhou, and Y. B. Wu, RSC Adv. 11, 15841 (2021). doi: 10.1039/D1RA02178H
    [22]
    B. Jin, R. Sun, B. Huo, C. Yuan, and Y. B. Wu, Chem. Commun. 57, 13716 (2021). doi: 10.1039/D1CC05844D
    [23]
    R. Sun, B. Jin, B. Huo, C. Yuan, H. J. Zhai, and Y. B. Wu, Chem. Commun. 58, 2552 (2022). doi: 10.1039/D1CC07313C
    [24]
    B. Jin and Z. R. Wang, Phys. Chem. Chem. Phys. 24, 17956 (2022). doi: 10.1039/D2CP01496C
    [25]
    Z. H. Cui, C. B. Shao, S. M. Gao, and Y H. Ding, Phys. Chem. Chem. Phys. 12, 13637 (2010). doi: 10.1039/c0cp00296h
    [26]
    Z. H. Cui, Y. H. Ding, J. L. Cabellos, E. Osorio, R. Islas, A. Restrepo, and G. Merino, Phys. Chem. Chem. Phys. 17, 8769 (2015). doi: 10.1039/C4CP05707D
    [27]
    J. Y. Guo, H. Y. Chai, Q. Duan, J. M. Qin, X. D. Shen, D. Y. Jiang, J. H. Hou, B. Yan, Z. R. Li, F. L. Gu, and Q. S. Li, Phys. Chem. Chem. Phys. 18, 4589 (2016). doi: 10.1039/C5CP06081H
    [28]
    Y. B. Wu, H. G. Lu, S. D. Li, and Z. X. Wang, J. Phys. Chem. A 113, 3395 (2009). doi: 10.1021/jp8099187
    [29]
    Y. B. Wu, Z. X. Li, X. H. Pu, and Z. X. Wang, J. Phys. Chem. C 115, 13187 (2011). doi: 10.1021/jp202200p
    [30]
    Y. B. Wu, Z. X. Li, X. H. Pu, and Z. X. Wang, Comput. Theor. Chem. 992, 78 (2012). doi: 10.1016/j.comptc.2012.05.008
    [31]
    M. H. Wang, M. Orozco-Ic, L. Leyva-Parra, W. Tiznado, J. Barroso, Y. H. Ding, Z. H. Cui, and G. Merino, J. Phys. Chem. A 125, 3009 (2021). doi: 10.1021/acs.jpca.1c02002
    [32]
    Z. H. Cui and Y. H. Ding, Phys. Chem. Chem. Phys. 13, 5960 (2011). doi: 10.1039/c0cp02475a
    [33]
    A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988). doi: 10.1021/cr00088a005
    [34]
    D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008). doi: 10.1039/b804083d
    [35]
    M. Saunders, J. Comput. Chem. 25, 621 (2004). doi: 10.1002/jcc.10407
    [36]
    P. P. Bera, K. W. Sattelmeyer, M. Saunders, H. F. Schaefer, and P. v. R. Schleyer, J. Phys. Chem. A 110, 4287 (2006). doi: 10.1021/jp057107z
    [37]
    T. D. Kühne, M. Iannuzzi, M. Del Ben, M. V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, J. Chem. Phys. 152, 194103 (2020). doi: 10.1063/5.0007045
    [38]
    H. G. Lu and Y. B. Wu, in GXYZ 2.0, A Random Search Program, Taiyuan: Shanxi University, (2015).
    [39]
    The AdNDP program was downloaded freely at http:// ion.chem.usu.edu/~boldyrev/adndp.php.
    [40]
    H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. Mcnicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, MolPro, a package of ab initio programs, version 2012.1, (2012).
    [41]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr, J. E. P. Montgomery, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, vision B. 01, Wallingford CT: Gaussian Inc., (2016).
    [42]
    P. Pyykkö, J. Phys. Chem. A 119, 2326 (2015). doi: 10.1021/jp5065819
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (303) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return