Turn off MathJax
Article Contents
Wen Zhang, Yong Zhou, Wei Chen, Tianjun Wang, Zhaoxian Qin, Gao Li, Zefeng Ren, Xueming Yang, Chuanyao Zhou. An Apparatus for Investigating the Kinetics of Plasmonic Catalysis†[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211160
Citation: Wen Zhang, Yong Zhou, Wei Chen, Tianjun Wang, Zhaoxian Qin, Gao Li, Zefeng Ren, Xueming Yang, Chuanyao Zhou. An Apparatus for Investigating the Kinetics of Plasmonic Catalysis[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211160

An Apparatus for Investigating the Kinetics of Plasmonic Catalysis

doi: 10.1063/1674-0068/cjcp2211160
More Information
  • Plasmonic catalysis, which is driven by the localized surface plasmon resonance of metal nanoparticles, has become an emerging field in heterogeneous catalysis. The microscopic mechanism of this kind of reaction, however, remains controversial partly because of the inaccuracy of temperature measurement and the ambiguity of reagent adsorption state. In order to investigate the kinetics of plasmonic catalysis, an online mass spectrometer-based apparatus has been built in our laboratory, with emphases on dealing with temperature measurement and adsorption state identification issues. Given the temperature inhomogeneity in the catalyst bed, three thermocouples are installed compared with the conventional design with only one. Such a multiple-point temperature measuring technique enables the quantitative calculation of equivalent temperature and thermal reaction contribution of the catalysts. Temperature-programmed desorption is incorporated into the apparatus, which helps to identify the adsorption state of reagents. The capabilities of the improved apparatus have been demonstrated by studying the kinetics of a model plasmon-induced catalytic reaction, i.e., H2+D2→HD over Au/TiO2. Dissociative adsorption of molecular hydrogen at Au/TiO2 interface and non-thermal contribution to HD production have been confirmed.

     

  • Part of the special issue of ``the Chinese Chemical Society's 17th National Chemical Dynamics Symposium"
  • loading
  • [1]
    S. Galvagno and G. Parravano, J. Catal. 55, 178 (1978). doi: 10.1016/0021-9517(78)90204-X
    [2]
    M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989). doi: 10.1016/0021-9517(89)90034-1
    [3]
    M. Haruta, Catal. Today 36, 153 (1997). doi: 10.1016/S0920-5861(96)00208-8
    [4]
    C. Ratnasamy and J. P. Wagner, Catal. Rev. 51, 325 (2009). doi: 10.1080/01614940903048661
    [5]
    W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, Chem. Soc. Rev. 44, 5793 (2015). doi: 10.1039/C4CS00362D
    [6]
    U. Aslam, V. G. Rao, S. Chavez, and S. Linic, Nat. Catal. 1, 656 (2018). doi: 10.1038/s41929-018-0138-x
    [7]
    P. Christopher, H. Xin, and S. Linic, Nat. Chem. 3, 467 (2011). doi: 10.1038/nchem.1032
    [8]
    M. C. Daniel and D. Astruc, Catal. Rev. 104, 293 (2004). doi: 10.1021/cr030698+
    [9]
    G. V. Hartland, Catal. Rev. 111, 3858 (2011). doi: 10.1021/cr1002547
    [10]
    S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015). doi: 10.1038/nmat4281
    [11]
    C. Boerigter, R. Campana, M. Morabito, and S. Linic, Nat. Commun. 7, 1 (2016). doi: 10.1038/ncomms10545
    [12]
    P. Christopher, H. Xin, A. Marimuthu, and S. Linic, Nat. Mater. 11, 1044 (2012). doi: 10.1038/nmat3454
    [13]
    S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 13, 240 (2013). doi: 10.1021/nl303940z
    [14]
    L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, Science 362, 69 (2018). doi: 10.1126/science.aat6967
    [15]
    L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149
    [16]
    Y. Sivan, J. Baraban, I. W. Un, and Y. Dubi, Science 364, 9367 (2019). doi: 10.1126/science.aaw9367
    [17]
    Y. Sivan, J. H. Baraban, and Y. Dubi, OSA Continuum 3, 483 (2020). doi: 10.1364/OSAC.376809
    [18]
    Y. Dubi, I. W. Un, and Y. Sivan, Chem. Sci. 11, 5017 (2020). doi: 10.1039/C9SC06480J
    [19]
    X. Zhang, X. L. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutierrez Vela, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, Nano Lett. 18, 1714 (2018). doi: 10.1021/acs.nanolett.7b04776
    [20]
    X. Li, X. Zhang, H. O. Everitt, and J. Liu, Nano Lett. 19, 1706 (2019). doi: 10.1021/acs.nanolett.8b04706
    [21]
    R. Cortright and J. Dumesic, Adv. Catal. 46, 161 (2001). doi: 10.1002/chin.200150264
    [22]
    S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, J. Am. Chem. Soc. 136, 64 (2014). doi: 10.1021/ja411017b
    [23]
    L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, Nano Lett. 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149
    [24]
    J. L. Falconer and J. A. Schwarz, Catal. Rev. Sci. Eng. 25, 141 (1983). doi: 10.1080/01614948308079666
    [25]
    J. Gong and C. B. Mullins, Acc. Chem. Res. 42, 1063 (2009). doi: 10.1021/ar8002706
    [26]
    A. V. Luikov, Analytical Heat Diffusion Theory, 1st Edn., New York: Elsevier-Science Direct, 1 (1968)
    [27]
    X. Du, Y. Huang, X. Pan, B. Han, Y. Su, Q. Jiang, M. Li, H. Tang, G. Li, and B. Qiao, Nat. Commun. 11, 1 (2020). doi: 10.1038/s41467-019-13993-7
    [28]
    S. K. Ghosh and T. Pal, Chem. Rev. 107, 4797 (2007). doi: 10.1021/cr0680282
    [29]
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal. 144, 175 (1993). doi: 10.1006/jcat.1993.1322
    [30]
    M. A. Henderson, W. S. Epling, C. H. Peden, and C. L. Perkins, J. Phys. Chem. B 107, 534 (2003). doi: 10.1021/jp0262113
    [31]
    X. Mao, X. Lang, Z. Wang, Q. Hao, B. Wen, Z. Ren, D. Dai, C. Zhou, L. M. Liu, and X. Yang, J. Phys. Chem. Lett. 4, 3839 (2013). doi: 10.1021/jz402053p
    [32]
    R. A. Ojifinni, N. S. Froemming, J. Gong, M. Pan, T. S. Kim, J. White, G. Henkelman, and C. B. Mullins, J. Am. Chem. Soc. 130, 6801 (2008). doi: 10.1021/ja800351j
    [33]
    T. Whittaker, K. S. Kumar, C. Peterson, M. N. Pollock, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 140, 16469 (2018). doi: 10.1021/jacs.8b04991
    [34]
    C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, and X. Yang, J. Am. Chem. Soc. 135, 10206 (2013). doi: 10.1021/ja4030963
    [35]
    F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520
    [36]
    A. G. Sault, R. J. Madix, and C. T. Campbell, Surf. Sci. 169, 347 (1986). doi: 10.1016/0039-6028(86)90616-3
    [37]
    K. B. Sravan Kumar, T. N. Whittaker, C. Peterson, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 142, 5760 (2020). doi: 10.1021/jacs.9b13729
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (432) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return