Turn off MathJax
Article Contents
Jian Song, WenLong Liang, Shouning Yang, Huayan Yang. Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210157
Citation: Jian Song, WenLong Liang, Shouning Yang, Huayan Yang. Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210157

Design Strategy of Infrared 4-Hydroxybenzylidene-imidazolinone-Type Chromophores based on Intramolecular Charge Transfer: a Theoretical Perspective

doi: 10.1063/1674-0068/cjcp2210157
More Information
  • Partial genetically encoded 4-hydroxybenzylidene-imidazolinone (HBI)-type chromophores are new promising fluorescent probes, which are suitable for imaging and detection of living cells. However, the lack of infrared chromophores hinders the development seriously. Here more than 30 HBI-type chromophores with regular structure modifications were employed and typical spectral redshift change laws and mechanisms were investigated by quantum methods. Results show that both one-photon spectrum (OPS, absorption/emission) and two-photon absorption (TPA) can achieve large redshift via either extending conjugated lengths of frag-3 or enlarging conjugated areas of frag-1 of HBI skeleton. Spectral redshifts of all chromophores are highly related to intramolecular charge transfer (ICT), but neutral ones are closely related to the total ICT or electron-accepting-numbers of frag-3, and the high correlative factor of anions is the aromaticity of frag-2 bridge. The frag-2 bridge with high aromaticity can open a reverse charge transfer channel in anion relative to neutral, obtaining significant redshift. Based on analysis, a new 6-hydroxyl-naphthalene-imidazolinone (HNI) series, which have larger conjugated area in frag-1, are predicted. The OPS and TPA of anionic HNI ones acquire about 76−96 nm and 119−146 nm redshift relative to traditional HBI series respectively as a whole. The longest emission of anionic HNI-4 realizes more 244 nm redshift relative to HBI-1. Our work clarifies worthy spectral regularities and redshift mechanisms of HBI-type chromophores and provide valuable design strategy for infrared chromophores synthesis in experiment.

     

  • loading
  • [1]
    E. Cassette, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret, and T. Pons, Adv. Drug Deliv. Rev. 65, 719 (2013). doi: 10.1016/j.addr.2012.08.016
    [2]
    J. Klohs, A. Wunder, and K. Licha, Basic Res. Cardiol. 103, 144 (2008). doi: 10.1007/s00395-008-0702-7
    [3]
    K. D. Piatkevich, F. V. Subach, and V. V. Verkhusha, Chem. Soc. Rev. 42, 3441 (2013). doi: 10.1039/c3cs35458j
    [4]
    C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, Sensors 8, 3082 (2008). doi: 10.3390/s8053082
    [5]
    R. Sang, X. Xu, Q. Wang, Q. Fan, and W. Huang, Acta Chim. Sin, 78, 901 (2020). doi: 10.6023/A20050190
    [6]
    C. Ding, Y. Huang, Z. Shen, and X. Chen, Adv. Mater. 33, 2007768 (2021).
    [7]
    Z. Chang, F. Liu, L. Wang, M. Deng, C. Zhou, Q. Sun, and J. Chu, Chin. Chem. Lett. 30, 1856 (2019). doi: 10.1016/j.cclet.2019.08.034
    [8]
    Y. Chen, L. Li, W. Chen, H. Chen, and J. Yin, Chin. Chem. Lett. 30, 1353 (2019). doi: 10.1016/j.cclet.2019.02.003
    [9]
    L. Chen and H. Han, Microchim. Acta 181, 1485 (2014). doi: 10.1007/s00604-014-1204-y
    [10]
    J. Zhang, H. Ye, Y. Jin, and D. Han, Top. Curr. Chem. 380, 6 (2022).
    [11]
    F. V. Subach and V. V. Verkhusha, Chem. Rev. 112, 4308 (2012). doi: 10.1021/cr2001965
    [12]
    R. N. Day and M. W. Davidson, Chem. Soc. Rev. 38, 2887 (2009). doi: 10.1039/b901966a
    [13]
    S. Pletnev, N. V. Pletneva, E. A. Souslova, D. M. Chudakov, S. Lukyanov, A. Wlodawer, Z. Dauter, and V. Pletnev, Acta Crystallogr. D 68, 1088 (2012). doi: 10.1107/S0907444912020598
    [14]
    G. M. Olenginski, J. Piacentini, D. R. Harris, N. A. Runko, B. M. Papoutsis, J. R. Alter, K. R. Hess, S. H. Brewer, and C. M. Phillips-Piro, Acta Crystallogr. D 77, 1010 (2021). doi: 10.1107/S2059798321006525
    [15]
    X. K. Shu, N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, and S. J. Remington, Biochemistry 45, 9639 (2006). doi: 10.1021/bi060773l
    [16]
    I. V. Yampolsky, S. J. Remington, V. I. Martynov, V. K. Potapov, S. Lukyanov, and K. A. Lukyanov, Biochemistry 44, 5788 (2005). doi: 10.1021/bi0476432
    [17]
    O. M. Subach, G. H. Patterson, L. M. Ting, Y. Wang, J. S. Condeelis, and V. V. Verkhusha, Nat. Methods 8, 771 (2011). doi: 10.1038/nmeth.1664
    [18]
    Y. H. Hsu, Y. A. Chen, H. W. Tseng, Z. Y. Zhang, J. Y. Shen, W. T. Chuang, T. C. Lin, C. S. Lee, W. Y. Hung, B. C. Hong, S. H. Liu, and P. T. Chou, J. Am. Chem. Soc. 136, 11805 (2014). doi: 10.1021/ja5062856
    [19]
    C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M. Duraj-Thatte, B. Azizi, L. M. Tolbert, and K. M. Solntsev, Curr. Opin. Chem. Eng. 27, 64 (2015). doi: 10.1016/j.cbpa.2015.06.002
    [20]
    M. Pattabiraman and A. Natarajan, Photophysicochemical Processes Directed Within Nano-Containers, Cham: Springer International Publishing, 321 (2020).
    [21]
    A. Baldridge, A. Amador, and L. M. Tolbert, Langmuir 27, 3271 (2011). doi: 10.1021/la2003244
    [22]
    S. R. Samanta, J. P. Da Silva, A. Baldridge, L. M. Tolbert, and V. Ramamurthy, Org. Lett. 16, 3304 (2014). doi: 10.1021/ol5013058
    [23]
    A. Singh, S. Karmakar, I. M. Abraham, D. Rambabu, D. Dave, R. Manjithaya, and T. K. Maji, Inorg. Chem. 59, 8251 (2020). doi: 10.1021/acs.inorgchem.0c00625
    [24]
    Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, and X. Zhang, J. Am. Chem. Soc. 140, 7381 (2018). doi: 10.1021/jacs.8b02176
    [25]
    C. H. Wolstenholme, H. Hu, S. Ye, B. E. Funk, D. Jain, C. H. Hsiung, G. Ning, Y. Liu, X. Li, and X. Zhang, J. Am. Chem. Soc. 142, 17515 (2020). doi: 10.1021/jacs.0c07245
    [26]
    K. H. Jung, M. Fares, L. S. Grainger, C. H. Wolstenholme, A. Hou, Y. Liu, and X. Zhang, Org. Biomol. Chem. 17, 1906 (2019). doi: 10.1039/C8OB01483C
    [27]
    A. Saady, V. Böttner, M. Meng, E. Varon, Y. Shav-Tal, C. Ducho, and B. Fischer, Eur. J. Med. Chem. 173, 99 (2019). doi: 10.1016/j.ejmech.2019.04.013
    [28]
    L. Cai, H. Li, X. Yu, L. Wu, X. Wei, T. D. James, and C. Huang, ACS Appl. Bio. Mater. 4, 2128 (2021). doi: 10.1021/acsabm.0c01446
    [29]
    X. Li, R. Zhao, Y. Wang, and C. Huang, J. Mater. Chem. B 6, 6592 (2018). doi: 10.1039/C8TB01885E
    [30]
    X. Zhi, B. Shen, and Y. Qian, New J. Chem. 44, 8823 (2020). doi: 10.1039/D0NJ01477J
    [31]
    Z. Zheng, T. Zhang, H. Liu, Y. Chen, R. T. K. Kwok, C. Ma, P. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, K. S. Wong, and B. Z. Tang, ACS Nano 12, 8145 (2018). doi: 10.1021/acsnano.8b03138
    [32]
    D. Li, P. Jing, L. Sun, Y. An, X. Shan, X. Lu, D. Zhou, D. Han, D. Shen, Y. Zhai, S. Qu, R. Zboril, and A. L. Rogach, Adv. Mater. 30, 1705913 (2018).
    [33]
    X. Liu, J. Li, C. Hu, Q. Zhou, W. Zhang, M. Hu, J. Zhou, and J. Wang, Angew. Chem. Int. Ed. 52, 4805 (2013). doi: 10.1002/anie.201301307
    [34]
    J. Tay, M. A. Parkes, K. Addison, Y. Chan, L. Zhang, H. C. Hailes, P. C. Bulman Page, S. R. Meech, L. Blancafort, and H. H. Fielding, J. Phys. Chem. Lett. 8, 765 (2017). doi: 10.1021/acs.jpclett.7b00174
    [35]
    A. Nakata, Y. Imamura, and H. Nakai, J. Chem. Phys. 125, 064109 (2006). doi: 10.1063/1.2227379
    [36]
    A. Nakata, Y. Imamura, T. Otsuka, and H. Nakai, J. Chem. Phys. 124, 94105 (2006). doi: 10.1063/1.2173987
    [37]
    I. Y. Zhang, J. Wu, and X. Xu, Chem. Commun. 46, 3057 (2010). doi: 10.1039/c000677g
    [38]
    X. Chen, J. Song, Z. N. Chen, T. Jin, F. Q. Long, H. Xie, Y. S. Zheng, W. Zhuang, and L. Zhang, J. Comput. Chem. 39, 2307 (2018). doi: 10.1002/jcc.25552
    [39]
    D. Grabarek and T. Andruniów, J. Chem. Theory Comput. 15, 490 (2019). doi: 10.1021/acs.jctc.8b00769
    [40]
    B. Kang, K. Y. Baek, and J. Y. Lee, Bull Korean Chem. Soc. 36, 276 (2015). doi: 10.1002/bkcs.10063
    [41]
    D. H. Friese, C. Hättig, and K. Ruud, Phys. Chem. Chem. Phys. 14, 1175 (2012). doi: 10.1039/C1CP23045J
    [42]
    D. Kánnár and P. G. Szalay, J. Mol. Model. 20, 2503 (2014). doi: 10.1007/s00894-014-2503-2
    [43]
    M. A. Salem and A. Brown, J. Chem. Theroy Comput. 10, 3260 (2014). doi: 10.1021/ct500028w
    [44]
    M. Schreiber, M. R. Silva-Junior, S. P. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008). doi: 10.1063/1.2889385
    [45]
    K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. De Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, Wires Comput. Mol. Sci. 4, 269 (2014). doi: 10.1002/wcms.1172
    [46]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, CT (2016).
    [47]
    T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [48]
    T. Lu. Multiwfn Manual, version 3.8(dev), Section 3.21.8, available at http://sobereva.com/multiwfn
    [49]
    M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, Nat. Methods. 8, 393 (2011). doi: 10.1038/nmeth.1596
    [50]
    M. Kojima, H. Hayashi, T. Aotake, S. Ikeda, M. Suzuki, N. Aratani, D. Kuzuhara, and H. Yamada, Chem. Asian J. 10, 2337 (2015). doi: 10.1002/asia.201500597
    [51]
    L. Cao, L. Zhang, Q. Wei, J. S. Zhang, D. J. Chen, S. Wang, S. J. Su, T. Wang, and Z. Y. Ge, Dyes Pigm. 176, 108242 (2020).
    [52]
    Y. L. Li, Z. P. Li, Y. Wang, A. Compaan, T. H. Ren, and W. J. Dong, Energy Environ. Sci. 6, 2907 (2013). doi: 10.1039/c3ee42001a
    [53]
    C. Yan, Z. Guo, W. Chi, W. Fu, S. A. A. Abedi, X. Liu, H. Tian, and W. H. Zhu, Nat. Commun. 12, 3869 (2021). doi: 10.1038/s41467-021-24187-5
    [54]
    L. Xu and Q. Zhang, Sci. China Mater. 60, 1093 (2017). doi: 10.1007/s40843-016-5170-2
    [55]
    M. Kertesz, C. H. Choi, and S. J. Yang, Chem. Rev. 105, 3448 (2005). doi: 10.1021/cr990357p
    [56]
    Y. X. Guo, G. H. Lu, J. Z. Zhuo, J. Y. Wang, X. Li, and Z. Q. Zhang, J. Mater. Chem. B 6, 2489 (2018). doi: 10.1039/C8TB00452H
    [57]
    D. K. Zhang, V. Martin, I. Garcia-Moreno, A. Costela, M. E. Perez-Ojeda, and Y. Xiao, Phys. Chem. Chem. Phys. 13, 13026 (2011). doi: 10.1039/c1cp21038f
    [58]
    W. Xu, P. Y. Ma, Q. P. Diao, L. B. Xu, X. Liu, Y. Sun, X. H. Wang, and D. Q. Song, Sens. Actuators B Chem. 252, 86 (2017). doi: 10.1016/j.snb.2017.05.137
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (372) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return