Citation: | Yuemiao Lai, Qing Guo, Xiao Chen. Low Temperature Ammonia Synthesis from Atomic N and Water on Rutile TiO2(110)†[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210152 |
[1] |
J. Guo and P. Chen, Chem. 3, 709 (2017). doi: 10.1016/j.chempr.2017.10.004
|
[2] |
C. J. M. Van der Ham, M. T. M. Koper, and D. G. H. Hetterscheid, Chem. Soc. Rev. 43, 5183 (2014). doi: 10.1039/C4CS00085D
|
[3] |
R. F. Service, Science 345, 610 (2014). doi: 10.1126/science.345.6197.610
|
[4] |
V. Rosca, M. Duca, M. T. de Groot, and M. T. M. Koper, Chem. Rev. 109, 2209 (2009). doi: 10.1021/cr8003696
|
[5] |
J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, Nat. Geosci. 1, 636 (2008). doi: 10.1038/ngeo325
|
[6] |
V. Smil, Nature 400, 415 (1999). doi: 10.1038/22672
|
[7] |
R. Lan, J. T. S. Irvine, and S. Tao, Int. J. Hydrogen Energy 37, 1482 (2012). doi: 10.1016/j.ijhydene.2011.10.004
|
[8] |
A. Klerke, C. H. Christensen, J. K. Nørskov, and T. Vegge, J. Mater. Chem. 18, 2304 (2008). doi: 10.1039/b720020j
|
[9] |
W. Guo, K. Zhang, Z. Liang, R. Zou, and Q. Xu, Chem. Soc. Rev. 48, 5658 (2019). doi: 10.1039/C9CS00159J
|
[10] |
X. Cui, C. Tang, and Q. Zhang, Adv. Energy Mater. 8, 1800369 (2018). doi: 10.1002/aenm.201800369
|
[11] |
L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S. Qiao, ACS Catal. 9, 2902 (2019). doi: 10.1021/acscatal.9b00366
|
[12] |
H. Hirakawa, M. Hashimoto, Y. Shiraishi, and T. Hirai, J. Am. Chem. Soc. 139, 10929 (2017). doi: 10.1021/jacs.7b06634
|
[13] |
G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc. 99, 7189 (1977). doi: 10.1021/ja00464a015
|
[14] |
G. N. Schrauzer, N. Strampach, L. N. Hui, M. R. Palmer, and J. Salehi, Proc. Natl. Acad. Sci. USA 80, 3873 (1983). doi: 10.1073/pnas.80.12.3873
|
[15] |
V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, Int. J. Hydrogen Energy 7, 845 (1982). doi: 10.1016/0360-3199(82)90001-5
|
[16] |
J. Soria, J. C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, J. Phys. Chem. 95, 274 (1991). doi: 10.1021/j100154a052
|
[17] |
G. N. Schrauzer, Energy Efficiency and Renewable Energy through Nanotechnology, Berlin: Springer, 601-623, (2011).
|
[18] |
J. G. Edwards, J. A. Davies, D. L. Boucher, and A. Mennad, Angew. Chem. Int. Ed. 31, 480 (1992). doi: 10.1002/anie.199204801
|
[19] |
D. L. Boucher, J. A. Davies, J. G. Edwards, and A. Mennad, J. Photochem. Photobiol. A 88, 53 (1995). doi: 10.1016/1010-6030(94)03994-6
|
[20] |
X. Y. Xie, P. Xiao, W. H. Fang, G. Cui, and W. Thiel, ACS Catal. 9, 9178 (2019). doi: 10.1021/acscatal.9b01551
|
[21] |
B. M. Comer and A. J. Medford, ACS Sustainable Chem. Eng. 6, 4648 (2018). doi: 10.1021/acssuschemeng.7b03652
|
[22] |
T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, J. Phys. Chem. C 117, 10990 (2013). doi: 10.1021/jp308872y
|
[23] |
T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, Phys. Chem. Chem. Phys. 14, 11491 (2012). doi: 10.1039/c2cp41549f
|
[24] |
Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366 (2012). doi: 10.1021/ja304049x
|
[25] |
Z. Ren, Q. Guo, C. Xu, W. Yang, C. Xiao, D. Dai, and X. Yang, Chin. J Chem. Phys. 25, 507 (2012). doi: 10.1088/1674-0068/25/05/507-512
|
[26] |
M. A. Henderson, Surf. Sci. 355, 151 (1996). doi: 10.1016/0039-6028(95)01357-1
|
[27] |
R. T. Zehr and M. A. Henderson, Surf. Sci. 602, 1507 (2008). doi: 10.1016/j.susc.2008.02.031
|
[28] |
C. Pang, A. Sasahara, and H. N. Onishi, Nanotechnology 18, 044003 (2006).
|
[29] |
A. Markovits, J. Ahdjoudj, and C. Minot, Surf. Sci. 365, 649 (1996). doi: 10.1016/0039-6028(96)00753-4
|
[30] |
W. S. Epling, C. H. Peden, M. A. Henderson, and U. Diebold, Surf. Sci. 412-413, 333 (1998). doi: 10.1016/S0039-6028(98)00446-4
|
[31] |
G. Lu, A. Linsebigler, and J. T. Yates, J. Phys. Chem. 98, 11733 (1994). doi: 10.1021/j100096a017
|
[32] |
B. Kim, Z. Dohnálek, J. Szanyi, B. D. Kay, and Y. K. Kim, Surf. Sci. 652, 148 (2016). doi: 10.1016/j.susc.2016.01.032
|
[33] |
S R. S. mith, Z. Li, L. Chen, Z. Dohnálek, and B. D. Kay, J. Phys. Chem. B 118, 8054 (2014). doi: 10.1021/jp501131v
|
[34] |
D. C. Sorescu, C. N. Rusu, and J. Yates, J. Phys. Chem. B 104, 4408 (2000). doi: 10.1021/jp993694a
|
[35] |
D. C. Sorescu and J. Yates, J. Phys. Chem. B 106, 6184 (2002). doi: 10.1021/jp0143140
|
[36] |
X. Xie, Q. Wang, W. Fang, and G. Cui, J. Phys. Chem. C 121, 16373 (2017). doi: 10.1021/acs.jpcc.7b04811
|
[37] |
B. Kim, B. D. Kay, Z. Dohnálek, and Y. K. Kim, J. Phys. Chem. C 119, 1130 (2015). doi: 10.1021/jp5109619
|
[38] |
Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, and Z. Dohnálek, J. Phys. Chem. B 110, 21840 (2006). doi: 10.1021/jp063619h
|
[39] |
S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 96, 066107 (2006). doi: 10.1103/PhysRevLett.96.066107
|
[40] |
Z. Geng, X. Jin, R. Wang, X. Chen, Q. Guo, Z. Ma, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 10956 (2018). doi: 10.1021/acs.jpcc.8b02945
|
[41] |
J. Lee, D. C. Sorescu, X. Deng, and K. D. Jordan, J. Phys. Chem. Lett. 4, 53 (2013). doi: 10.1021/jz301727n
|
[42] |
J. Matthiesen, J. O. Hansen, S. Wendt, E. Lira, R. Schaub, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 102, 226101 (2009). doi: 10.1103/PhysRevLett.102.226101
|
[43] |
C. Xu, R. Wang, F. Xu, Q. Guo, X. A. Wang, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 13774 (2018). doi: 10.1021/acs.jpcc.8b00724
|
[44] |
F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520
|
[45] |
Y. Du, N. G. Petrik, N. A. Deskins, Z. Wang, M. A. Henderson, G. A. Kimmel, and I. Lyubinetsky, Phys. Chem. Chem. Phys. 14, 3066 (2012). doi: 10.1039/C1CP22515D
|
![]() |
![]() |