Turn off MathJax
Article Contents
Yuemiao Lai, Qing Guo, Xiao Chen. Low Temperature Ammonia Synthesis from Atomic N and Water on Rutile TiO2(110)†[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210152
Citation: Yuemiao Lai, Qing Guo, Xiao Chen. Low Temperature Ammonia Synthesis from Atomic N and Water on Rutile TiO2(110)[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2210152

Low Temperature Ammonia Synthesis from Atomic N and Water on Rutile TiO2(110)

doi: 10.1063/1674-0068/cjcp2210152
More Information
  • Corresponding author: E-mail: chenx37@sustech.edu.cn
  • Received Date: 2022-10-21
  • Accepted Date: 2022-12-06
  • Available Online: 2022-12-08
  • We have investigated the formation of ammonia (NH3) from atomic N and water (H2O) on a rutile(R)-TiO2(110) surface using the temperature-programed desorption method. The formation of NH3 can be detected after coadsorption of atomic N and H2O on the R-TiO2(110) surface, desorbing from the 5-fold coordinated Ti4+ (Ti5c) sites at about 400 K, demonstrating that the NH3 formation on R-TiO2(110) is feasible at low surface temperature. During the process, both hydroxyl groups at the bridging oxygen rows and H2O on the Ti5c sites contribute to the formation of NH3, which are affected by H2O coverage. At low H2O coverage, the direct hopping of hydrogen atoms may be the dominant process for hydrogen transfer; while H2O-assisted hydrogen atoms diffusion may be preferred at high H2O coverage. Our result will be of significant help to get a deeper insight into the fundamental understandings of hydrogenation processes during the NH3 synthesis.

     

  • Part of the special issue of ``the Chinese Chemical Society's 17th National Chemical Dynamics Symposium"
  • loading
  • [1]
    J. Guo and P. Chen, Chem. 3, 709 (2017). doi: 10.1016/j.chempr.2017.10.004
    [2]
    C. J. M. Van der Ham, M. T. M. Koper, and D. G. H. Hetterscheid, Chem. Soc. Rev. 43, 5183 (2014). doi: 10.1039/C4CS00085D
    [3]
    R. F. Service, Science 345, 610 (2014). doi: 10.1126/science.345.6197.610
    [4]
    V. Rosca, M. Duca, M. T. de Groot, and M. T. M. Koper, Chem. Rev. 109, 2209 (2009). doi: 10.1021/cr8003696
    [5]
    J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, Nat. Geosci. 1, 636 (2008). doi: 10.1038/ngeo325
    [6]
    V. Smil, Nature 400, 415 (1999). doi: 10.1038/22672
    [7]
    R. Lan, J. T. S. Irvine, and S. Tao, Int. J. Hydrogen Energy 37, 1482 (2012). doi: 10.1016/j.ijhydene.2011.10.004
    [8]
    A. Klerke, C. H. Christensen, J. K. Nørskov, and T. Vegge, J. Mater. Chem. 18, 2304 (2008). doi: 10.1039/b720020j
    [9]
    W. Guo, K. Zhang, Z. Liang, R. Zou, and Q. Xu, Chem. Soc. Rev. 48, 5658 (2019). doi: 10.1039/C9CS00159J
    [10]
    X. Cui, C. Tang, and Q. Zhang, Adv. Energy Mater. 8, 1800369 (2018). doi: 10.1002/aenm.201800369
    [11]
    L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S. Qiao, ACS Catal. 9, 2902 (2019). doi: 10.1021/acscatal.9b00366
    [12]
    H. Hirakawa, M. Hashimoto, Y. Shiraishi, and T. Hirai, J. Am. Chem. Soc. 139, 10929 (2017). doi: 10.1021/jacs.7b06634
    [13]
    G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc. 99, 7189 (1977). doi: 10.1021/ja00464a015
    [14]
    G. N. Schrauzer, N. Strampach, L. N. Hui, M. R. Palmer, and J. Salehi, Proc. Natl. Acad. Sci. USA 80, 3873 (1983). doi: 10.1073/pnas.80.12.3873
    [15]
    V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, Int. J. Hydrogen Energy 7, 845 (1982). doi: 10.1016/0360-3199(82)90001-5
    [16]
    J. Soria, J. C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, J. Phys. Chem. 95, 274 (1991). doi: 10.1021/j100154a052
    [17]
    G. N. Schrauzer, Energy Efficiency and Renewable Energy through Nanotechnology, Berlin: Springer, 601-623, (2011).
    [18]
    J. G. Edwards, J. A. Davies, D. L. Boucher, and A. Mennad, Angew. Chem. Int. Ed. 31, 480 (1992). doi: 10.1002/anie.199204801
    [19]
    D. L. Boucher, J. A. Davies, J. G. Edwards, and A. Mennad, J. Photochem. Photobiol. A 88, 53 (1995). doi: 10.1016/1010-6030(94)03994-6
    [20]
    X. Y. Xie, P. Xiao, W. H. Fang, G. Cui, and W. Thiel, ACS Catal. 9, 9178 (2019). doi: 10.1021/acscatal.9b01551
    [21]
    B. M. Comer and A. J. Medford, ACS Sustainable Chem. Eng. 6, 4648 (2018). doi: 10.1021/acssuschemeng.7b03652
    [22]
    T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, J. Phys. Chem. C 117, 10990 (2013). doi: 10.1021/jp308872y
    [23]
    T. Liu, I. Temprano, S. J. Jenkins, D. A. King, and S. M. Driver, Phys. Chem. Chem. Phys. 14, 11491 (2012). doi: 10.1039/c2cp41549f
    [24]
    Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366 (2012). doi: 10.1021/ja304049x
    [25]
    Z. Ren, Q. Guo, C. Xu, W. Yang, C. Xiao, D. Dai, and X. Yang, Chin. J Chem. Phys. 25, 507 (2012). doi: 10.1088/1674-0068/25/05/507-512
    [26]
    M. A. Henderson, Surf. Sci. 355, 151 (1996). doi: 10.1016/0039-6028(95)01357-1
    [27]
    R. T. Zehr and M. A. Henderson, Surf. Sci. 602, 1507 (2008). doi: 10.1016/j.susc.2008.02.031
    [28]
    C. Pang, A. Sasahara, and H. N. Onishi, Nanotechnology 18, 044003 (2006).
    [29]
    A. Markovits, J. Ahdjoudj, and C. Minot, Surf. Sci. 365, 649 (1996). doi: 10.1016/0039-6028(96)00753-4
    [30]
    W. S. Epling, C. H. Peden, M. A. Henderson, and U. Diebold, Surf. Sci. 412-413, 333 (1998). doi: 10.1016/S0039-6028(98)00446-4
    [31]
    G. Lu, A. Linsebigler, and J. T. Yates, J. Phys. Chem. 98, 11733 (1994). doi: 10.1021/j100096a017
    [32]
    B. Kim, Z. Dohnálek, J. Szanyi, B. D. Kay, and Y. K. Kim, Surf. Sci. 652, 148 (2016). doi: 10.1016/j.susc.2016.01.032
    [33]
    S R. S. mith, Z. Li, L. Chen, Z. Dohnálek, and B. D. Kay, J. Phys. Chem. B 118, 8054 (2014). doi: 10.1021/jp501131v
    [34]
    D. C. Sorescu, C. N. Rusu, and J. Yates, J. Phys. Chem. B 104, 4408 (2000). doi: 10.1021/jp993694a
    [35]
    D. C. Sorescu and J. Yates, J. Phys. Chem. B 106, 6184 (2002). doi: 10.1021/jp0143140
    [36]
    X. Xie, Q. Wang, W. Fang, and G. Cui, J. Phys. Chem. C 121, 16373 (2017). doi: 10.1021/acs.jpcc.7b04811
    [37]
    B. Kim, B. D. Kay, Z. Dohnálek, and Y. K. Kim, J. Phys. Chem. C 119, 1130 (2015). doi: 10.1021/jp5109619
    [38]
    Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, and Z. Dohnálek, J. Phys. Chem. B 110, 21840 (2006). doi: 10.1021/jp063619h
    [39]
    S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 96, 066107 (2006). doi: 10.1103/PhysRevLett.96.066107
    [40]
    Z. Geng, X. Jin, R. Wang, X. Chen, Q. Guo, Z. Ma, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 10956 (2018). doi: 10.1021/acs.jpcc.8b02945
    [41]
    J. Lee, D. C. Sorescu, X. Deng, and K. D. Jordan, J. Phys. Chem. Lett. 4, 53 (2013). doi: 10.1021/jz301727n
    [42]
    J. Matthiesen, J. O. Hansen, S. Wendt, E. Lira, R. Schaub, E. Laegsgaard, F. Besenbacher, and B. Hammer, Phys. Rev. Lett. 102, 226101 (2009). doi: 10.1103/PhysRevLett.102.226101
    [43]
    C. Xu, R. Wang, F. Xu, Q. Guo, X. A. Wang, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 13774 (2018). doi: 10.1021/acs.jpcc.8b00724
    [44]
    F. Li, X. Chen, Q. Guo, and X. Yang, J. Phys. Chem. C 124, 26965 (2020). doi: 10.1021/acs.jpcc.0c09520
    [45]
    Y. Du, N. G. Petrik, N. A. Deskins, Z. Wang, M. A. Henderson, G. A. Kimmel, and I. Lyubinetsky, Phys. Chem. Chem. Phys. 14, 3066 (2012). doi: 10.1039/C1CP22515D
  • suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (301) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return